论文标题

通过可解释的机器学习预测金属眼镜中热激活的$β$事件的倾向

Predicting the propensity for thermally activated $β$ events in metallic glasses via interpretable machine learning

论文作者

Wang, Qi, Ding, Jun, Ma, Evan

论文摘要

金属眼镜(MGS)中的基本激发,即$β$工艺,涉及附近的子碱之间跳跃,这是无定形合金的许多不寻常特性的基础。然而,仅原子位置激活过程的倾向的高效率预测仍然是一个艰巨的挑战。最近,采用精心设计的现场环境描述符和机器学习(ML),在预测静态结构的压力激活$β$过程(即剪切转换)的倾向方面取得了显着进步。但是,复杂的张力应力场和方向依赖性激活将在数据中诱发非平凡的噪声,从而限制了所学的结构 - 陶艺映射的准确性。在这里,我们专注于热激活的基本激发,并在几个CU-ZR MGS中产生高质量的数据,从而允许对势能景观进行定量映射。在用短和中范围的杂质分布的原子环境指纹后,ML可以在ML模型的前所未有的准确性上识别具有强度抗性或高依从性的原子,以进行压力驱动的激活事件。有趣的是,定量的“任务之间”转移测试表明,我们所学的模型还可以推广以预测剪切转化的倾向。我们的数据集可能有可能在MGS中基于结构性关系的未来ML模型进行基准测试。

The elementary excitations in metallic glasses (MGs), i.e., $β$ processes that involve hopping between nearby sub-basins, underlie many unusual properties of the amorphous alloys. A high-efficacy prediction of the propensity for those activated processes from solely the atomic positions, however, has remained a daunting challenge. Recently, employing well-designed site environment descriptors and machine learning (ML), notable progress has been made in predicting the propensity for stress-activated $β$ processes (i.e., shear transformations) from the static structure. However, the complex tensorial stress field and direction-dependent activation would induce non-trivial noises in the data, limiting the accuracy of the structure-property mapping learned. Here, we focus on the thermally activated elementary excitations and generate high-quality data in several Cu-Zr MGs, allowing quantitative mapping of the potential energy landscape. After fingerprinting the atomic environment with short- and medium-range interstice distribution, ML can identify the atoms with strong resistance or high compliance to thermal activation, at an unprecedented accuracy over ML models for stress-driven activation events. Interestingly, a quantitative "between-task" transferring test reveals that our learnt model can also generalize to predict the propensity of shear transformation. Our dataset is potentially useful for benchmarking future ML models on structure-property relationships in MGs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源