论文标题
SU(N)海森堡自旋链中的对称保护拓扑阶段:Majorana-Fermion方法
Symmetry-protected topological phases in the SU(N) Heisenberg spin chain: a Majorana-fermion approach
论文作者
论文摘要
海森堡旋转链的对称性保护拓扑阶段的性质在SU(n)组的等级N的完全对称表示中,通过从可集成点开始的Majorana Fermion研究研究。后一种方法概括了TSVELIK开创的一种方法[A。 M. Tsvelik,物理。 Rev. B 42,10 499(1990)]描述了来自三个巨大的Maporaga Fermions的Spin-1 Heisenberg链的Haldane相的低能特性。我们发现,在所有n中,非分类损失相位与边缘状态的出现,其拓扑保护取决于n的均衡。尽管对于n奇数没有这样的保护,但具有n的阶段也被证明受到拓扑保护。我们发现,该阶段属于同一拓扑类别,该阶段与SU(N)组的自轭完全反对称表示的边缘状态相同。
The nature of symmetry-protected topological phases of Heisenberg spin chains in totally symmetric representations of rank N of the SU(N) group is investigated through a Majorana fermion study starting from an integrable point. The latter approach generalizes the one pioneered by Tsvelik [A. M. Tsvelik, Phys. Rev. B 42, 10 499 (1990)] to describe the low-energy properties of the Haldane phase of the spin-1 Heisenberg chain from three massive Majorana fermions. We find for all N the emergence of a non-degenerate gapped phase with edge states whose topological protection depends on the parity of N. While for N odd there is no such protection, the phase with even N is shown to be topologically protected. We find that the phase belongs to the same topological class as the phase with edge states living in self-conjugate fully antisymmetric representation of the SU(N) group.