论文标题

通过复发自动编码器和经常性概率模型学习视频压缩

Learning for Video Compression with Recurrent Auto-Encoder and Recurrent Probability Model

论文作者

Yang, Ren, Mentzer, Fabian, Van Gool, Luc, Timofte, Radu

论文摘要

过去几年,人们见证了将深度学习应用于视频压缩的越来越多的兴趣。但是,现有方法将仅使用几个参考帧来压缩视频框架,这限制了他们完全利用视频帧之间时间相关性的能力。为了克服这一缺点,本文提出了一种经常性自动编码器(RAE)和经常性概率模型(RPM)的经常性学习视频压缩(RLVC)方法。具体而言,RAE在编码器和解码器中都采用了复发细胞。因此,可以使用各种框架中的时间信息来生成潜在表示和重建压缩输出。此外,提出的RPM网络反复估计潜在表示的概率质量函数(PMF),该概率以先前的潜在表示为条件。由于连续帧之间的相关性,条件横熵可以低于独立的交叉熵,从而降低了比特率。实验表明,我们的方法可以从PSNR和MS-SSIM方面达到最新的视频压缩性能。此外,我们的方法的表现优于PSNR上X265的默认低延迟P(LDP)设置,并且在MS-SSIM上的性能也比SSIM-TUNED X265和X265最慢的设置具有更好的性能。这些代码可在https://github.com/renyang-home/rlvc.git上找到。

The past few years have witnessed increasing interests in applying deep learning to video compression. However, the existing approaches compress a video frame with only a few number of reference frames, which limits their ability to fully exploit the temporal correlation among video frames. To overcome this shortcoming, this paper proposes a Recurrent Learned Video Compression (RLVC) approach with the Recurrent Auto-Encoder (RAE) and Recurrent Probability Model (RPM). Specifically, the RAE employs recurrent cells in both the encoder and decoder. As such, the temporal information in a large range of frames can be used for generating latent representations and reconstructing compressed outputs. Furthermore, the proposed RPM network recurrently estimates the Probability Mass Function (PMF) of the latent representation, conditioned on the distribution of previous latent representations. Due to the correlation among consecutive frames, the conditional cross entropy can be lower than the independent cross entropy, thus reducing the bit-rate. The experiments show that our approach achieves the state-of-the-art learned video compression performance in terms of both PSNR and MS-SSIM. Moreover, our approach outperforms the default Low-Delay P (LDP) setting of x265 on PSNR, and also has better performance on MS-SSIM than the SSIM-tuned x265 and the slowest setting of x265. The codes are available at https://github.com/RenYang-home/RLVC.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源