论文标题

任意大的莫里塔·弗罗贝尼乌斯数字

Arbitrarily large Morita Frobenius numbers

论文作者

Eisele, Florian, Livesey, Michael

论文摘要

我们构建具有任意较大的Morita Frobenius数字的有限组的块,这是一个不变的,它决定了相关基本代数的定义的最小视野的大小。这回答了本森和凯萨尔的问题。这也取决于第二作者的结果,其中构建了任意大的$ \ Mathcal {o} $ -Morita Frobenius编号。

We construct blocks of finite groups with arbitrarily large Morita Frobenius numbers, an invariant which determines the size of the minimal field of definition of the associated basic algebra. This answers a question of Benson and Kessar. This also improves upon a result of the second author where arbitrarily large $\mathcal{O}$-Morita Frobenius numbers are constructed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源