论文标题
在SN2020OI附近的密集情况下旅行的非设备冲击波
A non-equipartition shockwave traveling in a dense circumstellar environment around SN2020oi
论文作者
论文摘要
我们报告了M100的SN2020OI年轻类型Supernova的发现和全面的后续观测,这是一个宏伟的设计螺旋星系,仅距离为14美元,MPC。我们跟进了从爆炸后仅几天到几个月的无线电,X射线和光学波长进行观察。超新星的光学行为类似于其他正常型IC超新星的光学行为。该事件未在X射线频段中检测到,但我们的无线电观察结果显示出明亮的MJY源($L_ν\大约1.2 \ times 10^{27} {\ rm erg \ \,s}^{ - 1} {\ rm hz}^{\ rm hz}^{ - 1} $)。如果可以检测到无线电发射的相对较少的剥离信封SNE,我们使用了此机会对我们获得的综合无线电数据集进行详细分析。无线电发射电子最初会经历倒数康普顿冷却的阶段,从而导致无线电发射的光谱指数陡峭。我们对冷却频率的分析指向与$ε_e/ε_b\ gtrsim 200 $的级别偏差,类似于其他一些剥离信封SNE的情况。我们对无线电数据的建模表明,SN弹射器驱动到偶然物质(CSM)驱动的冲击波正在以$ \ sim 3 \ times 10^{4} {4} \,{\ rm km \,s}^{ - 1} $移动。假设恒星祖先的恒定质量损失,我们发现质量损失的速率为$ \ dot {m} \大约1.4 \ times 10^{ - 4} \,{m} _ {\ odot} \,{\ odot} \,{\ rm yr} km \,s}^{ - 1} $。无线电发射的时间演变表明,径向CSM密度结构比标准$ r^{ - 2} $陡峭。
We report the discovery and panchromatic followup observations of the young Type Ic supernova, SN2020oi, in M100, a grand design spiral galaxy at a mere distance of $14$ Mpc. We followed up with observations at radio, X-ray and optical wavelengths from only a few days to several months after explosion. The optical behaviour of the supernova is similar to those of other normal Type Ic supernovae. The event was not detected in the X-ray band but our radio observation revealed a bright mJy source ($L_ν \approx 1.2 \times 10^{27} {\rm erg\,s}^{-1} {\rm Hz}^{-1}$). Given, the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio dataset we obtained. The radio emitting electrons initially experience a phase of inverse Compton cooling which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of $ε_e/ε_B \gtrsim 200$, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shockwave driven by the SN ejecta into the circumstellar matter (CSM) is moving at $\sim 3\times 10^{4}\,{\rm km\,s}^{-1}$. Assuming a constant mass-loss from the stellar progenitor, we find that the mass-loss rate is $\dot{M} \approx 1.4\times 10^{-4}\,{M}_{\odot}\,{\rm yr}^{-1}$, for an assumed wind velocity of $1000\,{\rm km\,s}^{-1}$. The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard $r^{-2}$.