论文标题
具有较高自旋重力的特征同时和可观察力
Characteristic Cohomology and Observables in Higher Spin Gravity
论文作者
论文摘要
我们以$ 3D $和$ 4D $更高的旋转重力模型对动态不变性进行了完整的分类,并对任意$ d $进行了一些评论。这些包括全息相关功能,相互作用顶点,壳作用,保守电流,表面电荷等。令人惊讶的是,有很多保守的$ p $ - 形式电流,以及各种$ p $。最后一个事实是与“量子重力中的非平凡保守电流”和类似陈述的紧张关系,表明模型的隐藏性。我们的结果依赖于对相应较高自旋代数的Hochschild,Cyclley和Chevalley-Eilenberg的系统计算。还提出了一种新的Chern-Simons理论不变的韦尔代数为量规代数。
We give a complete classification of dynamical invariants in $3d$ and $4d$ Higher Spin Gravity models, with some comments on arbitrary $d$. These include holographic correlation functions, interaction vertices, on-shell actions, conserved currents, surface charges, and some others. Surprisingly, there are a good many conserved $p$-form currents with various $p$. The last fact, being in tension with `no nontrivial conserved currents in quantum gravity' and similar statements, gives an indication of hidden integrability of the models. Our results rely on a systematic computation of Hochschild, cyclic, and Chevalley--Eilenberg cohomology for the corresponding higher spin algebras. A new invariant in Chern-Simons theory with the Weyl algebra as gauge algebra is also presented.