论文标题
在Abelian $ \ ell $ - 多编写词
On abelian $\ell$-towers of multigraphs
论文作者
论文摘要
我们研究$ \ ell $ $ adic的跨越树木数量如何在普通的Abelian $ \ ell $ - 多编写剂中变化。我们表明,对于一个无限的Abelian $ \ ell $ - 倾斜的家族,跨越树木数量的$ \ ell $ adic估值的行为与$ \ ell $ - $ adic-adic-adic估价的估值相似。
We study how the $\ell$-adic valuation of the number of spanning trees varies in regular abelian $\ell$-towers of multigraphs. We show that for an infinite family of regular abelian $\ell$-towers of bouquets, the behavior of the $\ell$-adic valuation of the number of spanning trees behave similarly to the $\ell$-adic valuation of the class numbers in $\mathbb{Z}_{\ell}$-extensions of number fields.