论文标题

通过铰链损失隐含最大化边缘

Implicitly Maximizing Margins with the Hinge Loss

论文作者

Lizama, Justin

论文摘要

针对分类任务的神经网络提出了新的损失函数,该任务通过将梯度分配给其关键点扩展了铰链损失。我们将证明,对于具有固定步长的线性分离数据的线性分类器,此修改后的铰链损耗的边距将$ \ ell_2 $ max-margin收敛到$ \ mathcal {o}(1/t)$。与$ \ MATHCAL {O}(1/\ LOG T)$指数损失(如Logistic损失)相比,此速率很快。此外,经验结果表明,这种提高的收敛速度将延续到Relu网络。

A new loss function is proposed for neural networks on classification tasks which extends the hinge loss by assigning gradients to its critical points. We will show that for a linear classifier on linearly separable data with fixed step size, the margin of this modified hinge loss converges to the $\ell_2$ max-margin at the rate of $\mathcal{O}( 1/t )$. This rate is fast when compared with the $\mathcal{O}(1/\log t)$ rate of exponential losses such as the logistic loss. Furthermore, empirical results suggest that this increased convergence speed carries over to ReLU networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源