论文标题
习惯学习由天真猕猴有效控制的网络动态支持
Habit learning supported by efficiently controlled network dynamics in naive macaque monkeys
论文作者
论文摘要
灵长类动物显示出在不确定和动态环境中学习习惯的明显能力。这种习惯的相关看法和行动会参与分布的神经回路。然而,这些电路如何支持习惯学习所必需的计算远未被理解。在这里,我们构建了网络能量学的形式理论,以说明大脑状态的变化如何产生顺序行为的变化。我们在横跨尾状核,前额叶皮层和额外脑瘤的多单元记录的背景下行使理论,这些猴子猕猴的额外脑瘤进行了60-180次的自由扫描任务,从而引起运动习惯。该理论依赖于确定记录通道之间有效的连通性,以及规定将大脑状态视为跨这些通道的试验特异性发射率。然后,该理论预测从一个状态过渡到另一种状态需要多少能量,鉴于活动可以仅通过有效的连接传播的限制。与理论的预测一致,我们观察到更相似和更复杂的试验扫视模式之间的过渡以及以较少熵选择扫视模式的会话。使用虚拟病变方法,我们证明了最低控制能量和行为与推断有效连通性的重大破坏之间观察到的关系的弹性。我们理论上有原则的研究习惯学习的方法为未来的努力铺平了道路,研究行为是如何源于分布式神经回路中的活动模式而产生的。
Primates display a marked ability to learn habits in uncertain and dynamic environments. The associated perceptions and actions of such habits engage distributed neural circuits. Yet, precisely how such circuits support the computations necessary for habit learning remain far from understood. Here we construct a formal theory of network energetics to account for how changes in brain state produce changes in sequential behavior. We exercise the theory in the context of multi-unit recordings spanning the caudate nucleus, prefrontal cortex, and frontal eyefields of female macaque monkeys engaged in 60-180 sessions of a free scan task that induces motor habits. The theory relies on the determination of effective connectivity between recording channels, and on the stipulation that a brain state is taken to be the trial-specific firing rate across those channels. The theory then predicts how much energy will be required to transition from one state into another, given the constraint that activity can spread solely through effective connections. Consistent with the theory's predictions, we observed smaller energy requirements for transitions between more similar and more complex trial saccade patterns, and for sessions characterized by less entropic selection of saccade patterns. Using a virtual lesioning approach, we demonstrate the resilience of the observed relationships between minimum control energy and behavior to significant disruptions in the inferred effective connectivity. Our theoretically principled approach to the study of habit learning paves the way for future efforts examining how behavior arises from changing patterns of activity in distributed neural circuitry.