论文标题

经验MSE最小化以估计标量参数

Empirical MSE Minimization to Estimate a Scalar Parameter

论文作者

de Chaisemartin, Clément, D'Haultfœuille, Xavier

论文摘要

当有两个估计器可用时,我们考虑标量参数的估计。第一个总是一致的。第二个通常是不一致的,但渐近方差比第一个差异较小,如果满足假设,则可能是一致的。我们建议使用具有最低估计于点误差(MSE)的两个估计量的加权总和。我们表明,第三个估计量从最小值 - 重新格局的角度统治了其他两个:最大渐近生长生成可能会通过使用该估计器而不是其他估计量来产生的最大估计值大于最大渐近线损坏。

We consider the estimation of a scalar parameter, when two estimators are available. The first is always consistent. The second is inconsistent in general, but has a smaller asymptotic variance than the first, and may be consistent if an assumption is satisfied. We propose to use the weighted sum of the two estimators with the lowest estimated mean-squared error (MSE). We show that this third estimator dominates the other two from a minimax-regret perspective: the maximum asymptotic-MSE-gain one may incur by using this estimator rather than one of the other estimators is larger than the maximum asymptotic-MSE-loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源