论文标题

多元Fay-Herriot模型的参数性自举置信区间

Parametric Bootstrap Confidence Intervals for the Multivariate Fay-Herriot Model

论文作者

Saegusa, Takumi, Sugasawa, Shonosuke, Lahiri, Partha

论文摘要

多元Fay-Herriot模型通过相关变量的小面积调查估算或同一变量或两者兼有的历史调查估计值之间的相关性相关性非常有效。尽管有关小面积估计的文献已经非常丰富,但迄今为止,来自多元模型的二阶有效置信区间的构建很少受到关注。在本文中,我们开发了一种参数式自举法,用于构建使用多元Fay-Herriot正常模型的小面积平均值的一般线性组合构建二阶有效置信区间。提出的参数引导方法用有效的算法和高速计算机的功率代替了困难和乏味的分析推导。此外,所提出的方法比分析方法更通用,因为可以轻松地将参数引导方法应用于模型参数估计的任何方法,以及多元fay-herriot模型的方差相互依赖性矩阵的任何特定结构,避免了所有麻烦和时间耗尽分析方法所需的繁琐和时间计算。我们将拟议的方法应用于为五十个州和美国哥伦比亚特区的四人家庭的中位收入构建置信区间。我们的数据分析表明,与相应的传统直接方法相比,提出的参数引导方法通常提供较短的置信区间。此外,从多变量模型获得的置信区间通常比相应的单变量模型短,该模型表明利用了三个人收入的中位数收入中位数收入中位数和五个人家庭的相关性的潜在优势。

The multivariate Fay-Herriot model is quite effective in combining information through correlations among small area survey estimates of related variables or historical survey estimates of the same variable or both. Though the literature on small area estimation is already very rich, construction of second-order efficient confidence intervals from multivariate models have so far received very little attention. In this paper, we develop a parametric bootstrap method for constructing a second-order efficient confidence interval for a general linear combination of small area means using the multivariate Fay-Herriot normal model. The proposed parametric bootstrap method replaces difficult and tedious analytical derivations by the power of efficient algorithm and high speed computer. Moreover, the proposed method is more versatile than the analytical method because the parametric bootstrap method can be easily applied to any method of model parameter estimation and any specific structure of the variance-covariance matrix of the multivariate Fay-Herriot model avoiding all the cumbersome and time-consuming calculations required in the analytical method. We apply our proposed methodology in constructing confidence intervals for the median income of four-person families for the fifty states and the District of Columbia in the United States. Our data analysis demonstrates that the proposed parametric bootstrap method generally provides much shorter confidence intervals compared to the corresponding traditional direct method. Moreover, the confidence intervals obtained from the multivariate model is generally shorter than the corresponding univariate model indicating the potential advantage of exploiting correlations of median income of four-person families with median incomes of three and five person families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源