论文标题
在$ p $ -laplacian反应扩散问题上,有动态边界条件在穿孔媒体中
On $p$-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media
论文作者
论文摘要
本文介绍了$ p $ -laplacian反应扩散问题的均质化,该域中包含定期分布的尺寸$ \ varepsilon $的孔,具有纯反应类型的动态边界条件。我们概括了我们先前的结果,在扩散是由Laplacian操作员建模的情况下,即$ P = 2 $。我们证明了均质化过程与非线性$ p $ laplacian反应扩散方程在没有零dirichlet边界条件的统一域中定义的,并带有非线性动力学边界条件的影响。
This paper deals with the homogenization of the $p$-Laplacian reaction-diffusion problems in a domain containing periodically distributed holes of size $\varepsilon$, with a dynamical boundary condition of pure-reactive type. We generalize our previous results established in the case where the diffusion is modeled by the Laplacian operator, i.e., with $p=2$. We prove the convergence of the homogenization process to a nonlinear $p$-Laplacian reaction-diffusion equation defined on a unified domain without holes with zero Dirichlet boundary condition and with extra terms coming from the influence of the nonlinear dynamical boundary conditions.