论文标题

Lee-Yang理论,高累积物和磁化模型中磁化的大泄漏统计数据

Lee-Yang theory, high cumulants, and large-deviation statistics of the magnetization in the Ising model

论文作者

Deger, Aydin, Brange, Fredrik, Flindt, Christian

论文摘要

我们使用累积方法在一个,二,三维中研究了ISING模型,该方法使我们能够从小晶格中的磁化波动中确定Lee-Yang Zeros。通过增加系统尺寸,我们能够确定热力学极限中Lee-Yang Zeros的收敛点,从而预测相变的发生。从实验的角度来看,累积方法具有吸引力,因为它使用了可测量量的波动,例如自旋晶格中的磁化,并且可以应用于多种平衡和非平衡问题。我们表明,Lee-Yang Zeros编码有关磁化罕见波动的重要信息。具体而言,通过将简单的ANSATZ用于自由能,我们用Lee-Yang Zeros表示磁化的大差分功能。对于许多表现出一阶相变的系统,该结果可能会成立。

We investigate the Ising model in one, two, and three dimensions using a cumulant method that allows us to determine the Lee-Yang zeros from the magnetization fluctuations in small lattices. By doing so with increasing system size, we are able to determine the convergence point of the Lee-Yang zeros in the thermodynamic limit and thereby predict the occurrence of a phase transition. The cumulant method is attractive from an experimental point of view since it uses fluctuations of measurable quantities, such as the magnetization in a spin lattice, and it can be applied to a variety of equilibrium and non-equilibrium problems. We show that the Lee-Yang zeros encode important information about the rare fluctuations of the magnetization. Specifically, by using a simple ansatz for the free energy, we express the large-deviation function of the magnetization in terms of Lee-Yang zeros. This result may hold for many systems that exhibit a first-order phase transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源