论文标题
通过更高衍生的校正来解决Reissner-Nordström奇点
Resolution of Reissner-Nordström singularities by higher-derivative corrections
论文作者
论文摘要
我们描述了爱因斯坦 - 马克斯韦尔理论的非最低限制性扩展,其中电荷的黑洞和点电荷具有全球规则的引力和电磁场。我们提供了该理论的精确静态球形对称解,该解会以弱耦合为单位,以减少reissner-nordströmOne,但是在$ r = 0 $时的奇异性是正规化的,以进行任意质量和(非呈现)电荷。我们讨论了这些解决方案的特性,并评论结果的身体意义。
We describe a non-minimal higher-derivative extension of Einstein-Maxwell theory in which electrically-charged black holes and point charges have globally regular gravitational and electromagnetic fields. We provide an exact static spherically symmetric solution of this theory that reduces to the Reissner-Nordström one at weak coupling, but in which the singularity at $r=0$ is regularized for arbitrary mass and (non-vanishing) charge. We discuss the properties of these solutions and comment on the physical significance of our results.