论文标题

$ f(t)$重力中的本地对称和物理自由度:狄拉克·哈密顿约束分析

Local symmetries and physical degrees of freedom in $f(T)$ gravity: a Dirac Hamiltonian constraint analysis

论文作者

Blagojević, Milutin, Nester, James M.

论文摘要

在有关$ f(t)$重力的文献中,当地洛伦兹不变性的状态和自由度的数量一直是有争议的。依靠详细的哈密顿分析,我们表明有几种情况描述了当地洛伦兹的不变性是如何破坏的,但是在一般情况下,发现物理自由度的数量被发现为$ n^*= 5 $;在$ d $尺寸中,此数字为$ n^*= d(d-3)/2+(d-1)$。正如预期的那样,该理论容易受到有问题的传播模式。我们将结果与文献中存在的结果进行比较。作为我们分析的副产品,明确确认了差异不变性。

In the literature on $f(T)$ gravity, the status of local Lorentz invariance and the number of physical degrees of freedom have been controversial issues. Relying on a detailed Hamiltonian analysis, we show that there are several scenarios describing how local Lorentz invariance can be broken, but in the generic case, the number of physical degrees of freedom is found to be $N^*=5$; in $D$ dimensions, this number is $N^*=D(D-3)/2+(D-1)$. As expected, the theory is vulnerable to having problematical propagating modes. We compare our results with those existing in the literature. As a byproduct of our analysis, the diffeomorphysm invariance is explicitly confirmed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源