论文标题

对长期和短期兴趣进行建模,并并行注意基于会话的建议

Modeling Long-Term and Short-Term Interests with Parallel Attentions for Session-based Recommendation

论文作者

Zhu, Jing, Xu, Yanan, Zhu, Yanmin

论文摘要

基于会话建议的目的是预测用户的下一个点击项目,这是一项具有挑战性的任务,因为用户行为和匿名隐式反馈信息的固有不确定性。一个有力的基于会话的推荐人通常可以探索用户不断发展的兴趣(即,他/她的长期和短期利益的结合)。注意机制的最新进展导致了解决此任务的最新方法。但是,有两个主要缺点。首先,大多数基于注意力的方法仅简单地利用最后一个点击的项目来表示用户的短期兴趣,忽略了时间信息和行为上下文,这可能无法全面捕获用户的最新偏好。其次,当前的研究通常认为长期和短期利益同样重要,但是它们的重要性应该是用户特定的。因此,我们为基于会话的建议提出了一种新型的并行注意网络模型(PAN)。具体来说,我们提出了一种新颖的时间感知注意机制,以同时考虑上下文信息和时间信号来学习用户的短期兴趣。此外,我们引入了一种封闭式的融合方法,该方法可以自适应地整合用户的长期和短期偏好,以生成混合利息表示。三个现实世界数据集的实验表明,与最先进的方法相比,PAN取得了明显的改进。

The aim of session-based recommendation is to predict the users' next clicked item, which is a challenging task due to the inherent uncertainty in user behaviors and anonymous implicit feedback information. A powerful session-based recommender can typically explore the users' evolving interests (i.e., a combination of his/her long-term and short-term interests). Recent advances in attention mechanisms have led to state-of-the-art methods for solving this task. However, there are two main drawbacks. First, most of the attention-based methods only simply utilize the last clicked item to represent the user's short-term interest ignoring the temporal information and behavior context, which may fail to capture the recent preference of users comprehensively. Second, current studies typically think long-term and short-term interests as equally important, but the importance of them should be user-specific. Therefore, we propose a novel Parallel Attention Network model (PAN) for Session-based Recommendation. Specifically, we propose a novel time-aware attention mechanism to learn user's short-term interest by taking into account the contextual information and temporal signals simultaneously. Besides, we introduce a gated fusion method that adaptively integrates the user's long-term and short-term preferences to generate the hybrid interest representation. Experiments on the three real-world datasets show that PAN achieves obvious improvements than the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源