论文标题

通过具有复合物理层的学习感应网络优化的多元素显微镜优化

Multi-element microscope optimization by a learned sensing network with composite physical layers

论文作者

Kim, Kanghyun, Konda, Pavan Chandra, Cooke, Colin L., Appel, Ron, Horstmeyer, Roarke

论文摘要

标准显微镜提供各种设置,以帮助提高最终显微镜用户的不同标本的可见性。但是,越来越多的数字显微镜用于捕获计算机算法自动解释的图像(例如,用于特征分类,检测或分割),通常没有任何人类参与。在这项工作中,我们研究了一种共同优化多个显微镜设置以及分类网络的方法,以通过此类自动化任务提高性能。我们使用实验成像的血液涂片来探索可编程照明和学生传播之间的相互作用,以进行自动疟疾寄生虫检测,以表明多元素“学会的感觉”优于其单一元素对应物。尽管不一定是人类解释的理想选择,但该网络由此产生的低分辨率显微镜图像(20倍弥补)提供了一个足够的对比度,足以与相应的高分辨率成像(100 x可弥补)的分类性能相匹配,这指出了在大型视野上准确自动化的道路。

Standard microscopes offer a variety of settings to help improve the visibility of different specimens to the end microscope user. Increasingly, however, digital microscopes are used to capture images for automated interpretation by computer algorithms (e.g., for feature classification, detection or segmentation), often without any human involvement. In this work, we investigate an approach to jointly optimize multiple microscope settings, together with a classification network, for improved performance with such automated tasks. We explore the interplay between optimization of programmable illumination and pupil transmission, using experimentally imaged blood smears for automated malaria parasite detection, to show that multi-element "learned sensing" outperforms its single-element counterpart. While not necessarily ideal for human interpretation, the network's resulting low-resolution microscope images (20X-comparable) offer a machine learning network sufficient contrast to match the classification performance of corresponding high-resolution imagery (100X-comparable), pointing a path towards accurate automation over large fields-of-view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源