论文标题
SMPR:单级多人姿势回归
SMPR: Single-Stage Multi-Person Pose Regression
论文作者
论文摘要
现有的多人姿势估计器可以大致分为两阶段的方法(自上而下和自下而上的方法)和单阶段方法。在预测所有无实例关键点后,两阶段方法要么对其他人检测器持有高度计算冗余,要么以启发性启发。最近提出的单阶段方法不依赖上述两个额外的阶段,而是比最新的自下而上方法低的性能。在这项工作中,提出了一种新颖的单阶段多人姿势回归,称为SMPR。它遵循密集预测的范式,并预测每个位置的实例感知关键点。除了特征聚合外,我们还提出了更好的策略来定义训练积极姿势假设,这在密集的姿势估计中起着重要作用。该网络还了解估计姿势的得分。姿势评分策略进一步提高了姿势估计性能,通过在非最大最大抑制(NMS)期间优先考虑上级姿势。我们表明,我们的方法不仅胜过现有的单阶段方法,而且还具有最新的自下而上方法的竞争力,在可可Test-DEV姿势基准上具有70.2 AP和77.5 AP75。代码可在https://github.com/cmdi-dlut/smpr上找到。
Existing multi-person pose estimators can be roughly divided into two-stage approaches (top-down and bottom-up approaches) and one-stage approaches. The two-stage methods either suffer high computational redundancy for additional person detectors or group keypoints heuristically after predicting all the instance-free keypoints. The recently proposed single-stage methods do not rely on the above two extra stages but have lower performance than the latest bottom-up approaches. In this work, a novel single-stage multi-person pose regression, termed SMPR, is presented. It follows the paradigm of dense prediction and predicts instance-aware keypoints from every location. Besides feature aggregation, we propose better strategies to define positive pose hypotheses for training which all play an important role in dense pose estimation. The network also learns the scores of estimated poses. The pose scoring strategy further improves the pose estimation performance by prioritizing superior poses during non-maximum suppression (NMS). We show that our method not only outperforms existing single-stage methods and but also be competitive with the latest bottom-up methods, with 70.2 AP and 77.5 AP75 on the COCO test-dev pose benchmark. Code is available at https://github.com/cmdi-dlut/SMPR.