论文标题
通过神经肌肉电刺激,通过机器学习来通过机器学习来调整RISE控制器调整和系统识别
RISE Controller Tuning and System Identification Through Machine Learning for Human Lower Limb Rehabilitation via Neuromuscular Electrical Stimulation
论文作者
论文摘要
神经肌肉电刺激(NME)已有效地应用于脊髓损伤(SCI)个体的许多康复治疗中。在这种情况下,我们向闭环NMES系统介绍了一种新颖,健壮和智能控制的方法。我们的方法利用强大的控制法来保证系统稳定性和机器学习工具,以优化控制器参数和系统标识。关于后者,我们介绍了过去的康复数据的使用来构建更现实的数据驱动的确定模型。此外,我们使用所提出的方法将下肢修复的拟议方法使用,该控制技术被称为“误差符号的强大组成部分”(RISE),一个离线改进的遗传算法优化器和神经网络模型。尽管在文献中,上升控制器在健康受试者方面取得了良好的结果,而没有任何微调方法,但试验和错误方法将迅速导致SCI患者肌肉疲劳。在本文中,首次在一个刺激训练中评估了两名截瘫主体,并在至少两个和五个会议中评估了七个健康个体。结果表明,所提出的方法比经验调整提供了更好的控制性能,后者可以避免基于NMES的临床程序过早疲劳。
Neuromuscular electrical stimulation (NMES) has been effectively applied in many rehabilitation treatments of individuals with spinal cord injury (SCI). In this context, we introduce a novel, robust, and intelligent control-based methodology to closed-loop NMES systems. Our approach utilizes a robust control law to guarantee system stability and machine learning tools to optimize both the controller parameters and system identification. Regarding the latter, we introduce the use of past rehabilitation data to build more realistic data-driven identified models. Furthermore, we apply the proposed methodology for the rehabilitation of lower limbs using a control technique named the robust integral of the sign of the error (RISE), an offline improved genetic algorithm optimizer, and neural network models. Although in the literature, the RISE controller presented good results on healthy subjects, without any fine-tuning method, a trial and error approach would quickly lead to muscle fatigue for individuals with SCI. In this paper, for the first time, the RISE controller is evaluated with two paraplegic subjects in one stimulation session and with seven healthy individuals in at least two and at most five sessions. The results showed that the proposed approach provided a better control performance than empirical tuning, which can avoid premature fatigue on NMES-based clinical procedures.