论文标题

带有复杂社区的三角形晶格上的位点渗透阈值

Site percolation thresholds on triangular lattice with complex neighborhoods

论文作者

Malarz, Krzysztof

论文摘要

我们确定阈值$ p_c $用于在三角形晶格上随机渗透的阈值,用于包含最接近(NN)的邻域(NN),Next-Nearest(2NN),Next-Next-Nearest(3nn),Next-Next-Next-Next-Next-Next-nearest(4nn)(4NN)和Next-Next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-next-Nearest(Next-Next-next-next-Nearest(5nn)( (3NN+2NN+NN,5NN+4NN+NN,5NN+4NN+3NN+2NN,5NN+4NN+4NN+3NN+2NN+NN)。我们使用Newman和Ziff的快速蒙特卡洛算法[M. E. J. Newman和R. M. Ziff,《物理评论》 E 64,016706(2001)],用于获得最大群集大小对职业概率的依赖性。 Bastas等人将该方法与方法结合在一起。 [N. Bastas,K。Kosmidis,P。Giazitzidis和M. Maragakis,物理评论E 90,062101(2014)],估计低统计数据的阈值。渗透阈值的估计值为$ p_c(\ text {4nn})= 0.192410(43)$,$ p_c(\ text {3nn+2nn})= 0.232008(38)$,$ p_c($ p_c) $ p_c(\ text {3nn+2nn+nn})= 0.215484(19)$,$ p_c(\ text {5nn+4nn+nn})= 0.131792(58)$ $ p_c(\ text {5nn+4nn+3nn+2nn+nn})= 0.115847(21)$。该方法在三角晶格上的站点渗透的标准情况下进行测试,其中$ p_c(\ text {nn})= p_c(\ text {2nn})= p_c(\ text {3nn}) $ p_c(\ text {nn})= 0.500029(46)$,仅通过一千多个晶格实现。

We determine thresholds $p_c$ for random site percolation on a triangular lattice for neighbourhoods containing nearest (NN), next-nearest (2NN), next-next-nearest (3NN), next-next-next-nearest (4NN) and next-next-next-next-nearest (5NN) neighbours, and their combinations forming regular hexagons (3NN+2NN+NN, 5NN+4NN+NN, 5NN+4NN+3NN+2NN, 5NN+4NN+3NN+2NN+NN). We use a fast Monte Carlo algorithm, by Newman and Ziff [M. E. J. Newman and R. M. Ziff, Physical Review E 64, 016706 (2001)], for obtaining the dependence of the largest cluster size on occupation probability. The method is combined with a method, by Bastas et al. [N. Bastas, K. Kosmidis, P. Giazitzidis, and M. Maragakis, Physical Review E 90, 062101 (2014)], of estimating thresholds from low statistics data. The estimated values of percolation thresholds are $p_c(\text{4NN})=0.192410(43)$, $p_c(\text{3NN+2NN})=0.232008(38)$, $p_c(\text{5NN+4NN})=0.140286(5)$, $p_c(\text{3NN+2NN+NN})=0.215484(19)$, $p_c(\text{5NN+4NN+NN})=0.131792(58)$, $p_c(\text{5NN+4NN+3NN+2NN})=0.117579(41)$, $p_c(\text{5NN+4NN+3NN+2NN+NN})=0.115847(21)$. The method is tested on the standard case of site percolation on triangular lattice, where $p_c(\text{NN})=p_c(\text{2NN})=p_c(\text{3NN})=p_c(\text{5NN})=\frac{1}{2}$ is recovered with five digits accuracy $p_c(\text{NN})=0.500029(46)$ by averaging over one thousand lattice realisations only.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源