论文标题
通过折衷回归权重改善了小域估计
Improved Small Domain Estimation via Compromise Regression Weights
论文作者
论文摘要
小域参数的收缩估计通常使用嘈杂的“直接”估计值的组合,该估计仅使用来自特定小域中的数据和更稳定的回归估计。当回归模型被弄清楚时,由于对估计不良的回归表面的大量收缩,噪声域的估计性性能可能会遭受损失。在本文中,我们介绍了一类新的强大的,经验驱动的回归权重,该权重靶向小域的估计在全球回归模型的潜在错误指定下。我们的回归权重是与最佳线性无偏预测指标(BLUP)以及与观察到的最佳预测指标(OBP)相关的基于模型的权重的凸组合。通过最小化对小域均值的均方预测误差的新颖,无偏见的估计,我们标记了相关的小域估计“妥协的最佳预测变量”或CBP,可以找到该凸组合中的折衷参数。对于回归权重的数据自适应混合物,只要回归模型正确,CBP就能具有OBP的鲁棒性,同时保留EBLUP的主要优势。我们证明了CBP在估计老年人步态速度的应用中使用。
Shrinkage estimates of small domain parameters typically utilize a combination of a noisy "direct" estimate that only uses data from a specific small domain and a more stable regression estimate. When the regression model is misspecified, estimation performance for the noisier domains can suffer due to substantial shrinkage towards a poorly estimated regression surface. In this paper, we introduce a new class of robust, empirically-driven regression weights that target estimation of the small domain means under potential misspecification of the global regression model. Our regression weights are a convex combination of the model-based weights associated with the best linear unbiased predictor (BLUP) and those associated with the observed best predictor (OBP). The compromise parameter in this convex combination is found by minimizing a novel, unbiased estimate of the mean-squared prediction error for the small domain means, and we label the associated small domain estimates the "compromise best predictor", or CBP. Using a data-adaptive mixture for the regression weights enables the CBP to possess the robustness of the OBP while retaining the main advantages of the EBLUP whenever the regression model is correct. We demonstrate the use of the CBP in an application estimating gait speed in older adults.