论文标题
在图形卷积网络中调查和减轻程度相关的偏差
Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks
论文作者
论文摘要
图形卷积网络(GCN)显示了在图形上半监督学习任务的有希望的结果,因此与其他方法相比,变得有利。尽管GCN取得了巨大的成功,但很难通过不足的监督培训GCN。当标记的数据受到限制时,GCN的性能会使低度节点不满意。尽管一些先前的工作分析了GCN在整个模型级别上的成功和失败,但在单个节点级别上进行介绍GCN仍未得到充分展望。 在本文中,我们分析了GCN关于节点程度分布的GCN。从经验观察到理论证明,我们确认GCN偏向具有较大程度的节点,即使大多数图中高度的节点的代表性不足,也具有较高的精度。我们进一步开发了一种新型的自我监督学习程度特异性GCN(SL-DSGC),可减轻模型和数据方面的GCN与程度相关的偏差。首先,我们提出了一个特异性的GCN层,该层既捕获不同程度的节点的差异和相似性,从而减少了与所有节点共享相同参数引起的GCN的内部模型偏差。其次,我们设计了一种自我监督的学习算法,该算法在没有标记的节点上创建具有贝叶斯神经网络的未标记节点的伪标签。伪标签增加了连接到标记的邻居的低度节点的机会,从而从数据的角度降低了GCN的偏见。在SL-DSGC的随机梯度下降中,进一步利用不确定性评分为重量伪标记。在三个基准数据集上的实验表明,SL-DSGC不仅要优于最先进的自我训练/自我监督学习的GCN方法,而且还可以极大地提高GCN的精度,从而极大地提高了低度节点的精度。
Graph Convolutional Networks (GCNs) show promising results for semi-supervised learning tasks on graphs, thus become favorable comparing with other approaches. Despite the remarkable success of GCNs, it is difficult to train GCNs with insufficient supervision. When labeled data are limited, the performance of GCNs becomes unsatisfying for low-degree nodes. While some prior work analyze successes and failures of GCNs on the entire model level, profiling GCNs on individual node level is still underexplored. In this paper, we analyze GCNs in regard to the node degree distribution. From empirical observation to theoretical proof, we confirm that GCNs are biased towards nodes with larger degrees with higher accuracy on them, even if high-degree nodes are underrepresented in most graphs. We further develop a novel Self-Supervised-Learning Degree-Specific GCN (SL-DSGC) that mitigate the degree-related biases of GCNs from model and data aspects. Firstly, we propose a degree-specific GCN layer that captures both discrepancies and similarities of nodes with different degrees, which reduces the inner model-aspect biases of GCNs caused by sharing the same parameters with all nodes. Secondly, we design a self-supervised-learning algorithm that creates pseudo labels with uncertainty scores on unlabeled nodes with a Bayesian neural network. Pseudo labels increase the chance of connecting to labeled neighbors for low-degree nodes, thus reducing the biases of GCNs from the data perspective. Uncertainty scores are further exploited to weight pseudo labels dynamically in the stochastic gradient descent for SL-DSGC. Experiments on three benchmark datasets show SL-DSGC not only outperforms state-of-the-art self-training/self-supervised-learning GCN methods, but also improves GCN accuracy dramatically for low-degree nodes.