论文标题
使用软X射线FS脉冲从气相发出光发射:对空间充电效应的研究
Photoemission from the gas phase using soft x-ray fs pulses: An investigation of the space-charge effects
论文作者
论文摘要
提出了对来自气相超快光电子光谱中发生的空间充电效应的实验和计算研究。目标样品CF $ _3 $ i对自由电子激光产生的Ultrashort(100 fs)远图辐射脉冲感到兴奋。光电子的能量分布的修饰,即光谱结构的移位和拓宽,被监测是脉冲强度的函数。将实验结果与使用Barnes-HUT算法来计算颗粒之间作用的单个库仑力的影响的计算模拟进行了比较。在介绍的模型中,在低辐射通量下获得的调查光谱用于确定光发射事件后电子的初始能量分布。然后,由$ n $体的计算复制了由空间充电效应修饰的光谱,该计算模拟了受单个相互库仑抑制和正离子的吸引力的光电子的动力学。使用的数值方法解释了空间充电对能量分布的影响,并允许重现完整的光电子光谱,而不仅仅是特定的光发射结构。这些仿真还提供了有关Picsecond量表上空间充电效应的时间演变的信息。强调和讨论与实心样品相光发射的情况的差异。提出的仿真程序虽然省略了角度分布的分析,但构成了一个有效的简化模型,该模型允许在具有高强度脉冲源的时间分辨光发射实验中预测和说明对光电子能量光谱的空间电荷效应。
An experimental and computational investigation of the space-charge effects occurring in ultrafast photoelectron spectroscopy from the gas phase is presented. The target sample CF$_3$I is excited by ultrashort (100 fs) far-ultraviolet radiation pulses produced by a free-electron laser. The modification of the energy distribution of the photoelectrons, i.e. the shift and broadening of the spectral structures, is monitored as a function of the pulse intensity. The experimental results are compared with computational simulations which employ a Barnes-Hut algorithm to calculate the effect of individual Coulomb forces acting among the particles. In the presented model, a survey spectrum acquired at low radiation fluence is used to determine the initial energy distribution of the electrons after the photoemission event. The spectrum modified by the space-charge effects is then reproduced by $N$-body calculations that simulate the dynamics of the photoelectrons subject to the individual mutual Coulomb repulsion and to the attractive force of the positive ions. The employed numerical method accounts for the space-charge effects on the energy distribution and allows to reproduce the complete photoelectron spectrum and not just a specific photoemission structure. The simulations also provide information on the time evolution of the space-charge effects on the picosecond scale. Differences with the case of photoemission from solid samples are highlighted and discussed. The presented simulation procedure, although it omits the analysis of angular distribution, constitutes an effective simplified model that allows to predict and account for space-charge effects on the photoelectron energy spectrum in time-resolved photoemission experiments with high-intensity pulsed sources.