论文标题

$(δ+ 1)$ - 边缘色的快速分布式算法

A Fast Distributed Algorithm for $(Δ+ 1)$-Edge-Coloring

论文作者

Bernshteyn, Anton

论文摘要

我们在本地模型中提出了确定性分布式算法,该算法找到了适当的$(δ+ 1)$ - $ n $ vertex的最大度$δ$ in $ \ mathrm {poly}(δ,\ log n)$ n)的$ n $ vertex图。这是第一个仅使用$δ+1 $颜色(与Viping的定理给出的限制)的第一个非平凡分布式边缘色算法。我们的方法灵感来自于Grebík和Pikhurko引起的Viping定理的最新证明。

We present a deterministic distributed algorithm in the LOCAL model that finds a proper $(Δ+ 1)$-edge-coloring of an $n$-vertex graph of maximum degree $Δ$ in $\mathrm{poly}(Δ, \log n)$ rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only $Δ+1$ colors (matching the bound given by Vizing's theorem). Our approach is inspired by the recent proof of the measurable version of Vizing's theorem due to Grebík and Pikhurko.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源