论文标题

联合神经渲染和内在图像分解的内在自动编码器

Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image Decomposition

论文作者

Alhaija, Hassan Abu, Mustikovela, Siva Karthik, Thies, Justus, Jampani, Varun, Nießner, Matthias, Geiger, Andreas, Rother, Carsten

论文摘要

神经渲染技术有效地有效的照片现实图像综合,同时通过学习物理图像形成过程来提供对场景参数的丰富控制。尽管已经为此任务提出了几种监督方法,但很难获得具有准确对齐3D模型的图像数据集。这项工作的主要贡献是通过训练未配对数据的神经渲染算法来解除这一限制。更具体地说,我们提出了一个自动编码器,用于从合成3D模型中联合生成逼真的图像,同时将真实图像分解为其内在形状和外观特性。与传统的图形管道相反,我们的方法不需要指定所有场景属性,例如材料参数和手工照明。取而代之的是,我们从一小部分3D型号和较大的未对齐的真实图像中学习了光真逼真的递延渲染,它们在实践中都很容易获取。同时,我们获得真实图像的准确固有分解,而不需要配对的地面真相。我们的实验证实,渲染和分解的联合处理确实是有益的,并且我们的方法在定性和定量上都优于最先进的图像到图像对图像。

Neural rendering techniques promise efficient photo-realistic image synthesis while at the same time providing rich control over scene parameters by learning the physical image formation process. While several supervised methods have been proposed for this task, acquiring a dataset of images with accurately aligned 3D models is very difficult. The main contribution of this work is to lift this restriction by training a neural rendering algorithm from unpaired data. More specifically, we propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties. In contrast to a traditional graphics pipeline, our approach does not require to specify all scene properties, such as material parameters and lighting by hand. Instead, we learn photo-realistic deferred rendering from a small set of 3D models and a larger set of unaligned real images, both of which are easy to acquire in practice. Simultaneously, we obtain accurate intrinsic decompositions of real images while not requiring paired ground truth. Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源