论文标题
核子的固有魅力和共线,混合和$ k_t $ -FACTORIZARIZAD方法的大速度的魅力产生
Intrinsic charm in the nucleon and charm production at large rapidities in collinear, hybrid and $k_T$-factorization approaches
论文作者
论文摘要
我们讨论了固有魅力(IC)在核子中的作用在$ c $ quark(或$ \ bar c $ -Antiquark)在低能和高能量的质子proton碰撞中的正向产生。该计算是在类壳中的分线方法方法中进行的,使用分离式符号分布和未整合(横向动量依赖)GluON分布的$ k_t $ -Factorization方法以及混合方法中进行计算。对于共线性化方法,我们将矩阵元素用于无质量和巨大的魅力夸克/古怪的元素。对于几种不同的IC模型,显示了魅力夸克/古夸克的速度和横向动量的分布。远期魅力生产以$ GC $ - 融合流程为主导。 IC贡献占主导地位,比标准PQCD(外部)$ gg $ - fusion机构在大速度或feynman- $ x_f $的$ c \ bar c $ pair Production中占主导地位。我们在领先订单和临时订单$ k_t $ -factorization方法中执行类似的计算。 $ k_t $ -FACTORIZARIZARIZIOD方法导致的横截面要大得多。在高能和$ c $ QUARK或$ \ bar c $ -Antiquark的大型速度下,以极小的$ x $测试Gluon分布。 IC贡献对冰立实验中的高能中微子产生产生了重要的后果,并且可以在某种程度上通过船舶和FASER实验在LHC进行测试,并通过对$ν_τ$中性粉的生产进行研究。
We discuss the role of intrinsic charm (IC) in the nucleon for forward production of $c$-quark (or $\bar c$-antiquark) in proton-proton collisions for low and high energies. The calculations are performed in collinear-factorization approach with on-shell partons, $k_T$-factorization approach with off-shell partons as well as in a hybrid approach using collinear charm distributions and unintegrated (transverse momentum dependent) gluon distributions. For the collinear-factorization approach we use matrix elements for both massless and massive charm quarks/antiquarks. The distributions in rapidity and transverse momentum of charm quark/antiquark are shown for a few different models of IC. Forward charm production is dominated by $gc$-fusion processes. The IC contribution dominates over the standard pQCD (extrinsic) $gg$-fusion mechanism of $c\bar c$-pair production at large rapidities or Feynman-$x_F$. We perform similar calculations within leading-order and next-to-leading order $k_T$-factorization approach. The $k_T$-factorization approach leads to much larger cross sections than the LO collinear approach. At high energies and large rapidities of $c$-quark or $\bar c$-antiquark one tests gluon distributions at extremely small $x$. The IC contribution has important consequences for high-energy neutrino production in the Ice-Cube experiment and can be, to some extent, tested at the LHC by the SHIP and FASER experiments by studies of the $ν_τ$ neutrino production.