论文标题
高质量X射线二进制射线照相 - 恒星风的微结构通过柱密度的变化
Radiography in high mass X-ray binaries -- Micro-structure of the stellar wind through variability of the column density
论文作者
论文摘要
在高质量X射线二进制文件(HMXB)中,一种积聚的紧凑物体绕着高质量恒星绕,它通过致密和不均匀的风损失质量。可以使用紧凑的对象作为X射线背光,可以利用风中吸收色谱柱密度的时间变化,以阐明风的微观结构并获得高质量恒星的无偏见质量损失率。我们通过简化的风模型探讨了块对柱密度变化的影响。特别是,我们专注于柱密度的标准偏差和增强吸收发作的特征持续时间,并将它们与基于孔隙长度的分析预测进行比较。我们确定了有利的系统和轨道阶段,以确定风小结构。色谱柱密度的相干时间尺度显示为紧凑型物体前面的团块的自刺时间。我们提供了一个配方,以获得对团块质量和质量的准确测量,纯粹基于柱密度的可观察到的时间变异性。连贯的时间尺度可以直接访问团块的大小,而它们的质量可以与可变性的幅度分开推导。如果是由于没有经过的口气,则某些HMXB中的高柱密度变化需要高质量团块才能再现观察到的峰峰幅度和相干时间尺度。这些结块属性几乎与从第一原理得出的属性兼容。另外,其他组件可能会导致色谱柱密度的可变性:较大的轨道尺度结构,该结构是由仍有待定的机制产生的,或在吸积盘附近的茂密环境(例如吸积盘,流出磁盘,流出或球形壳周围的球形壳)周围的磁层磁圈。
In high mass X-ray binaries (HMXBs), an accreting compact object orbits a high mass star which loses mass through a dense and inhomogeneous wind. Using the compact object as an X-ray backlight, the time variability of the absorbing column density in the wind can be exploited in order to shed light on the micro-structure of the wind and obtain unbiased stellar mass loss rates for high mass stars. We explore the impact of clumpiness on the variability of the column density with a simplified wind model. In particular, we focus on the standard deviation of the column density and the characteristic duration of enhanced absorption episodes, and compare them with analytical predictions based on the porosity length. We identified the favorable systems and orbital phases to determine the wind micro-structure. The coherence time scale of the column density is shown to be the self-crossing time of a clump in front of the compact object. We provide a recipe to get accurate measurements of the size and of the mass of the clumps, purely based on the observable time variability of the column density. The coherence time scale grants direct access to the size of the clumps while their mass can be deduced separately from the amplitude of the variability. If it is due to unaccreted passing-by clumps, the high column density variations in some HMXBs requires high mass clumps to reproduce the observed peak-to-peak amplitude and coherence time scales. These clump properties are hardly compatible with the ones derived from first principles. Alternatively, other components could contribute to the variability of the column density: larger orbital scale structures produced by a mechanism still to be identified, or a dense environment in the immediate vicinity of the accretor such as an accretion disk, an outflow or a spherical shell around the magnetosphere of the accreting neutron star.