论文标题
Terahertz脉搏使用衍射表面
Terahertz Pulse Shaping Using Diffractive Surfaces
论文作者
论文摘要
深度学习的最新进展一直在为光学的各种反问题提供非直觉的解决方案。在机器学习和光学的交集中,衍射网络将波浪播放与深度学习合并,以设计特定于任务的元素,以执行各种任务,例如对象分类和机器视觉。在这里,我们提出了一个衍射网络,该网络用于将任意宽带脉冲形成所需的光波形,形成紧凑的脉冲工程系统。我们通过制造被动衍射层,共同控制了光谱振幅和输入Terahertz脉冲的相位,从实验中证明了与不同时间宽度的方脉冲合成。我们的结果构成了Terahertz光谱中直接脉冲成型的首次演示,其中复杂值的光谱调制函数直接作用于Terahertz频率。此外,提出了一种类似乐高的物理转移学习方法,以通过用新训练的衍射层代替现有网络的一部分来说明脉冲宽度可调性,并表明其模块化。这个基于学习的衍射脉冲工程框架可以在例如通信,超快速成像和光谱法中找到广泛的应用。
Recent advances in deep learning have been providing non-intuitive solutions to various inverse problems in optics. At the intersection of machine learning and optics, diffractive networks merge wave-optics with deep learning to design task-specific elements to all-optically perform various tasks such as object classification and machine vision. Here, we present a diffractive network, which is used to shape an arbitrary broadband pulse into a desired optical waveform, forming a compact pulse engineering system. We experimentally demonstrate the synthesis of square pulses with different temporal-widths by manufacturing passive diffractive layers that collectively control both the spectral amplitude and the phase of an input terahertz pulse. Our results constitute the first demonstration of direct pulse shaping in terahertz spectrum, where a complex-valued spectral modulation function directly acts on terahertz frequencies. Furthermore, a Lego-like physical transfer learning approach is presented to illustrate pulse-width tunability by replacing part of an existing network with newly trained diffractive layers, demonstrating its modularity. This learning-based diffractive pulse engineering framework can find broad applications in e.g., communications, ultra-fast imaging and spectroscopy.