论文标题

图萨斯:耦合相位方程的完全隐式平行方法

Tusas: A fully implicit parallel approach for coupled phase-field equations

论文作者

Ghosh, Supriyo, Newman, Christopher K., Francois, Marianne M.

论文摘要

我们开发了一种完全耦合的,完全明式的方法,用于对金属和合金中凝固的相位场建模。纯属金属和金属合金中凝固的预测模拟在材料科学领域仍然是一个重大挑战,因为固化过程中的微观结构形成在固体材料的性质和性能中起着至关重要的作用。我们的仿真方法由微观级别的部分微分方程的完全耦合的非线性系统组成有限的元素空间离散化,该系统通过预处理的Jacobian无Jacobian Newton-Krylov方法在及时隐含地处理。该方法允许时间步骤大于受传统显式CFL限制限制的时间步骤,并且由于基于代数多移民和块分解的有效预处理策略而在算法上可扩展以及有效。我们在开源TUSAS框架中实现了这种方法,该方法是在C ++中开发的一般灵活的工具,用于求解非线性偏微分方程的耦合系统。根据算法的可伸缩性和效率对我们的方法的性能进行了分析,而TUSA的计算性能是根据新兴异质体系结构的并行可伸缩性和效率来提出的。我们证明,现代算法,离散化和计算科学以及异质硬件为添加剂制造过程中微观结构演化的预测相位模拟提供了强大的途径。

We develop a fully-coupled, fully-implicit approach for phase-field modeling of solidification in metals and alloys. Predictive simulation of solidification in pure metals and metal alloys remains a significant challenge in the field of materials science, as microstructure formation during the solidification process plays a critical role in the properties and performance of the solid material. Our simulation approach consists of a finite element spatial discretization of the fully-coupled nonlinear system of partial differential equations at the microscale, which is treated implicitly in time with a preconditioned Jacobian-free Newton-Krylov method. The approach allows time steps larger than those restricted by the traditional explicit CFL limit and is algorithmically scalable as well as efficient due to an effective preconditioning strategy based on algebraic multigrid and block factorization. We implement this approach in the open-source Tusas framework, which is a general, flexible tool developed in C++ for solving coupled systems of nonlinear partial differential equations. The performance of our approach is analyzed in terms of algorithmic scalability and efficiency, while the computational performance of Tusas is presented in terms of parallel scalability and efficiency on emerging heterogeneous architectures. We demonstrate that modern algorithms, discretizations, and computational science, and heterogeneous hardware provide a robust route for predictive phase-field simulation of microstructure evolution during additive manufacturing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源