论文标题

局部因果结构学习及其在2型糖尿病与骨矿物质密度之间的发现

Local Causal Structure Learning and its Discovery Between Type 2 Diabetes and Bone Mineral Density

论文作者

Wang, Wei, Hu, Gangqiang, Yuan, Bo, Ye, Shandong, Chen, Chao, Cui, YaYun, Zhang, Xi, Qian, Liting

论文摘要

2型糖尿病(T2DM)是最普遍的慢性疾病之一,会影响人体的葡萄糖代谢,从而减少了生命的数量并给社会医疗保健带来了沉重的负担。 T2DM患者更可能遭受骨骼脆弱性骨折,因为糖尿病会影响骨矿物质密度(BMD)。但是,以医学方式发现BMD的决定因素是昂贵且耗时的。在本文中,我们提出了一种新型算法,先前知识驱动的局部因果结构学习(PKCL),以从临床数据中发现BMD及其因子之间的基本因果机制。由于数据有限,但是医学的先验知识有限,因此PKCL充分利用了先验知识来挖掘目标关系的局部因果结构。在没有长期的医学统计实验的情况下,PKCL将医学先验知识与发现的因果关系相结合,可以取得更可靠的结果。广泛的实验是在新提供的临床数据集上进行的。事实证明,PKCL对数据的实验研究与现有医学知识高度相对应,这证明了PKCL的优势和有效性。为了说明先验知识的重要性,还研究了没有先验知识的算法的结果。

Type 2 diabetes (T2DM), one of the most prevalent chronic diseases, affects the glucose metabolism of the human body, which decreases the quantity of life and brings a heavy burden on social medical care. Patients with T2DM are more likely to suffer bone fragility fracture as diabetes affects bone mineral density (BMD). However, the discovery of the determinant factors of BMD in a medical way is expensive and time-consuming. In this paper, we propose a novel algorithm, Prior-Knowledge-driven local Causal structure Learning (PKCL), to discover the underlying causal mechanism between BMD and its factors from the clinical data. Since there exist limited data but redundant prior knowledge for medicine, PKCL adequately utilize the prior knowledge to mine the local causal structure for the target relationship. Combining the medical prior knowledge with the discovered causal relationships, PKCL can achieve more reliable results without long-standing medical statistical experiments. Extensive experiments are conducted on a newly provided clinical data set. The experimental study of PKCL on the data is proved to highly corresponding with existing medical knowledge, which demonstrates the superiority and effectiveness of PKCL. To illustrate the importance of prior knowledge, the result of the algorithm without prior knowledge is also investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源