论文标题
基于GRU的混合密度网络,用于数据驱动的动态随机编程
A GRU-based Mixture Density Network for Data-Driven Dynamic Stochastic Programming
论文作者
论文摘要
解决时间序列问题的常规深度学习方法,例如长期任期内存(LSTM)和门控复发单元(GRU),都将时间序列数据序列视为一个单个单元的输入(预测的时间序列结果)。这些深度学习方法在许多与时间序列有关的问题中取得了巨大的成功,但是,由于LSTM或GRU的输出是标量,而不是随机编程模型所需的概率分布,因此不能将其应用于数据驱动的随机编程问题。为了填补这项工作,我们提出了一个创新的数据驱动的动态随机编程(DD-DSP)框架,以解决时间序列决策问题,其中涉及三个组件:GRU,Gaussian混合模型(GMM)和sp。具体而言,我们设计了整合GRU和GMM的深神经网络,该网络称为GRU和GMM,该网络称为基于GRU的混合物密度网络(MDN),其中GRU用于根据最新的历史数据来预测时间序列结果,GMM用于提取预测量的相应概率分布,然后将结果作为SP的参数输入。为了验证我们的方法,我们将框架应用于共享搬迁问题上。实验验证表明,我们的框架优于基于LSTM的数据驱动优化,车辆平均移动率低于LSTM。
The conventional deep learning approaches for solving time-series problem such as long-short term memory (LSTM) and gated recurrent unit (GRU) both consider the time-series data sequence as the input with one single unit as the output (predicted time-series result). Those deep learning approaches have made tremendous success in many time-series related problems, however, this cannot be applied in data-driven stochastic programming problems since the output of either LSTM or GRU is a scalar rather than probability distribution which is required by stochastic programming model. To fill the gap, in this work, we propose an innovative data-driven dynamic stochastic programming (DD-DSP) framework for time-series decision-making problem, which involves three components: GRU, Gaussian Mixture Model (GMM) and SP. Specifically, we devise the deep neural network that integrates GRU and GMM which is called GRU-based Mixture Density Network (MDN), where GRU is used to predict the time-series outcomes based on the recent historical data, and GMM is used to extract the corresponding probability distribution of predicted outcomes, then the results will be input as the parameters for SP. To validate our approach, we apply the framework on the car-sharing relocation problem. The experiment validations show that our framework is superior to data-driven optimization based on LSTM with the vehicle average moving lower than LSTM.