论文标题
具有参数依赖性的体系结构绩效模型的增量校准
Incremental Calibration of Architectural Performance Models with Parametric Dependencies
论文作者
论文摘要
基于体系结构的性能预测(ABPP)允许评估系统性能,并在没有所有替代方案的情况下回答问题。创建模型时的一个困难是,性能模型参数(PMP,例如资源需求,循环迭代编号和分支概率)取决于各种影响因素,例如输入数据,使用的硬件和应用工作负载。为了实现广泛的问题,绩效模型(PMS)需要具有超出校准模型的测量值之外的预测能力。因此,需要对可能变化的影响因子进行参数化。 现有方法可以通过测量完整的系统来估计参数化的PMP。因此,它们太昂贵了,无法经常应用,直到每个代码更改后。重新校准时,它们也不会对模型进行手动更改。 在这项工作中,我们介绍了性能模型(CIPM)的连续集成,该模型会逐步提取和校准性能模型,包括参数依赖性。 CIPM通过更新PM并适应更改的零件来响应源代码更改。为了允许ABPP,CIPM使用测量值(通过性能测试或在生产中执行系统生成)和统计分析,例如回归分析和决策树。 此外,我们的方法还响应生产变化(例如负载或部署变化),并相应地校准PMS的使用和部署部分。 为了进行评估,我们使用了两个案例研究。评估结果表明,我们能够逐步准确地校准PM。
Architecture-based Performance Prediction (AbPP) allows evaluation of the performance of systems and to answer what-if questions without measurements for all alternatives. A difficulty when creating models is that Performance Model Parameters (PMPs, such as resource demands, loop iteration numbers and branch probabilities) depend on various influencing factors like input data, used hardware and the applied workload. To enable a broad range of what-if questions, Performance Models (PMs) need to have predictive power beyond what has been measured to calibrate the models. Thus, PMPs need to be parametrized over the influencing factors that may vary. Existing approaches allow for the estimation of parametrized PMPs by measuring the complete system. Thus, they are too costly to be applied frequently, up to after each code change. They do not keep also manual changes to the model when recalibrating. In this work, we present the Continuous Integration of Performance Models (CIPM), which incrementally extracts and calibrates the performance model, including parametric dependencies. CIPM responds to source code changes by updating the PM and adaptively instrumenting the changed parts. To allow AbPP, CIPM estimates the parametrized PMPs using the measurements (generated by performance tests or executing the system in production) and statistical analysis, e.g., regression analysis and decision trees. Additionally, our approach responds to production changes (e.g., load or deployment changes) and calibrates the usage and deployment parts of PMs accordingly. For the evaluation, we used two case studies. Evaluation results show that we were able to calibrate the PM incrementally and accurately.