论文标题

内部/外部拉姆西定理和递归理论

An inside/outside Ramsey theorem and recursion theory

论文作者

Fiori-Carones, Marta, Shafer, Paul, Soldà, Giovanni

论文摘要

受拉姆齐(Ramsey)的成对定理的启发,竞争对手和桑德斯(Sands)证明了我们所谓的内部/外部拉姆西定理:每个无限的图形$ g $都包含一个无限的子集$ h $,因此$ g $的每个顶点均与$ g $的每个顶点均与恰恰无,一个或无限的多个$ h $ $ h $的角度。我们从反向数学和Weihrauch学位的角度分析了竞争对手定理。在相反的数学中,我们发现竞争对手定理等于算术理解,因此比Ramsey的Pairs更强。我们还确定了竞争对手定理的弱形式,相当于Ramsey定理的成对。我们转向Weihrauch学位,对竞争对手定理的计算强度进行更精细的分析。我们发现竞争对手定理与弱科尼格的引理的双重跳跃相当。我们认为,竞争对手定理是表现出这种强度的第一个自然定理。此外,通过将我们的结果与Brattka和Rakotoniaina的结果相结合,我们可以获得解决竞争对手定理的一个实例,这完全对应于同时解决Ramsey定理对Pairs的许多实例。最后,我们表明,弱竞争对手定理的统一计算强度与拉姆齐定理对成对的计算强度弱,表明拉姆西定理对成对的许多众所周知的后果并不能减少弱竞争对手定理。我们还解决了文献中关于与上升/下降序列原理和无限鸽洞原理相对应的weihrauch学位之间关系的明显差距。

Inspired by Ramsey's theorem for pairs, Rival and Sands proved what we refer to as an inside/outside Ramsey theorem: every infinite graph $G$ contains an infinite subset $H$ such that every vertex of $G$ is adjacent to precisely none, one, or infinitely many vertices of $H$. We analyze the Rival-Sands theorem from the perspective of reverse mathematics and the Weihrauch degrees. In reverse mathematics, we find that the Rival-Sands theorem is equivalent to arithmetical comprehension and hence is stronger than Ramsey's theorem for pairs. We also identify a weak form of the Rival-Sands theorem that is equivalent to Ramsey's theorem for pairs. We turn to the Weihrauch degrees to give a finer analysis of the Rival-Sands theorem's computational strength. We find that the Rival-Sands theorem is Weihrauch equivalent to the double jump of weak König's lemma. We believe that the Rival-Sands theorem is the first natural theorem shown to exhibit exactly this strength. Furthermore, by combining our result with a result of Brattka and Rakotoniaina, we obtain that solving one instance of the Rival-Sands theorem exactly corresponds to simultaneously solving countably many instances of Ramsey's theorem for pairs. Finally, we show that the uniform computational strength of the weak Rival-Sands theorem is weaker than that of Ramsey's theorem for pairs by showing that a number of well-known consequences of Ramsey's theorem for pairs do not Weihrauch reduce to the weak Rival-Sands theorem. We also address an apparent gap in the literature concerning the relationship between Weihrauch degrees corresponding to the ascending/descending sequence principle and the infinite pigeonhole principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源