论文标题

量子重力中的密度矩阵

Density matrices in quantum gravity

论文作者

Anous, Tarek, Kruthoff, Jorrit, Mahajan, Raghu

论文摘要

我们研究量子重力中的密度矩阵,重点是拓扑变化。我们认为,在重力路径积分中包含烤面包虫孔不是一个免费的选择,而是由多宇宙希尔伯特空间中全球状态的规范所决定的。具体而言,hartle-hawking(HH)状态不包含Bra-Ket虫洞。最近有人指出,需要烤面包孔虫孔,以避免潜在的金袋和强大的亚辅助悖论,这表明HH状态存在问题。然而,在具有单个大型连接宇宙的制度中,可以通过追踪未观察到的宇宙来出现近似bra-ket虫洞。更急剧的可能性是,HH状态是非扰动的,等效于具有Bra-Ket虫洞的状态,或者第三量化的Hilbert Space是一维的。一路上,我们从全球引力与克莱因·戈登理论之间的众所周知的关系中汲取了一些有用的教训。特别是,边界创建操作员的换向性,这对于构建Alpha状态并具有双重合奏解释是必不可少的。例如,在世界线重力示例中,克莱恩 - 戈登场操作员不会在及时分离时上下班。

We study density matrices in quantum gravity, focusing on topology change. We argue that the inclusion of bra-ket wormholes in the gravity path integral is not a free choice, but is dictated by the specification of a global state in the multi-universe Hilbert space. Specifically, the Hartle-Hawking (HH) state does not contain bra-ket wormholes. It has recently been pointed out that bra-ket wormholes are needed to avoid potential bags-of-gold and strong subadditivity paradoxes, suggesting a problem with the HH state. Nevertheless, in regimes with a single large connected universe, approximate bra-ket wormholes can emerge by tracing over the unobserved universes. More drastic possibilities are that the HH state is non-perturbatively gauge equivalent to a state with bra-ket wormholes, or that the third-quantized Hilbert space is one-dimensional. Along the way we draw some helpful lessons from the well-known relation between worldline gravity and Klein-Gordon theory. In particular, the commutativity of boundary-creating operators, which is necessary for constructing the alpha states and having a dual ensemble interpretation, is subtle. For instance, in the worldline gravity example, the Klein-Gordon field operators do not commute at timelike separation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源