论文标题
亚临界远程随机群和potts模型中相关函数的尖锐渐近函数
Sharp asymptotics of correlation functions in the subcritical long-range random-cluster and Potts models
论文作者
论文摘要
对于一个带有簇权重的随机群集模型$ q \ geq 1 $的家庭,我们证明$ 0 $连接到$ x $的可能性在渐近上等于$ \ tfrac {1} {q} {q}χ(β)^{2}^{2}βJ_{0,x} $。本文中开发的方法可以应用于存在一个单声音的随机群集表示的任何自旋模型。
For a family of random-cluster models with cluster weights $q\geq 1$, we prove that the probability that $0$ is connected to $x$ is asymptotically equal to $\tfrac{1}{q}χ(β)^{2}βJ_{0,x}$. The method developed in this article can be applied to any spin model for which there exists a random-cluster representation which is one-monotonic.