论文标题
图形神经网络,包括稀疏可解释性
Graph Neural Networks Including Sparse Interpretability
论文作者
论文摘要
图形神经网络(GNN)是多功能,功能强大的机器学习方法,可实现图形结构和特征表示学习,并在许多域上都有应用。对于需要解释的关键应用程序,已经利用了基于注意力的GNN。但是,这些方法要么依赖于特定的模型架构,要么在解释中缺乏对图结构和节点特征的共同考虑。在这里,我们提出了一个模型 - 反应框架,用于解释重要的图形结构和节点特征,图形神经网络,包括稀疏可解释性(GISST)。使用任何GNN模型,GISST结合了注意机制和稀疏性正则化,以产生与任何基于图的任务相关的重要子图和节点特征子集。通过单个自我发项层,GISST模型了解了输入图中每个节点特征和边缘的重要性概率。通过将这些重要性概率包括在模型损耗函数中,概率是优化的,并与特定于任务的性能相关联。此外,GISST用熵和L1正则化稀疏这些重要性概率,以减少输入图形拓扑和节点特征中的噪声。与替代解释方法相比,我们的GISST模型在合成数据集中获得了出色的节点特征和边缘解释精度。此外,我们的GISST模型能够在现实世界数据集中识别重要的图形结构。我们在理论上证明了边缘特征的重要性和多种边缘类型可以通过将它们纳入GISST边缘概率计算来考虑。通过共同考虑拓扑,节点功能和边缘功能,GISST固有地为任何GNN模型和任务提供了简单且相关的解释。
Graph Neural Networks (GNNs) are versatile, powerful machine learning methods that enable graph structure and feature representation learning, and have applications across many domains. For applications critically requiring interpretation, attention-based GNNs have been leveraged. However, these approaches either rely on specific model architectures or lack a joint consideration of graph structure and node features in their interpretation. Here we present a model-agnostic framework for interpreting important graph structure and node features, Graph neural networks Including SparSe inTerpretability (GISST). With any GNN model, GISST combines an attention mechanism and sparsity regularization to yield an important subgraph and node feature subset related to any graph-based task. Through a single self-attention layer, a GISST model learns an importance probability for each node feature and edge in the input graph. By including these importance probabilities in the model loss function, the probabilities are optimized end-to-end and tied to the task-specific performance. Furthermore, GISST sparsifies these importance probabilities with entropy and L1 regularization to reduce noise in the input graph topology and node features. Our GISST models achieve superior node feature and edge explanation precision in synthetic datasets, as compared to alternative interpretation approaches. Moreover, our GISST models are able to identify important graph structure in real-world datasets. We demonstrate in theory that edge feature importance and multiple edge types can be considered by incorporating them into the GISST edge probability computation. By jointly accounting for topology, node features, and edge features, GISST inherently provides simple and relevant interpretations for any GNN models and tasks.