论文标题

通过条件生成对抗网络的不确定性估计

Estimation with Uncertainty via Conditional Generative Adversarial Networks

论文作者

Lee, Minhyeok, Seok, Junhee

论文摘要

常规的预测性人工神经网络(ANN)通常采用确定性重量矩阵;因此,他们的预测是一个点估计。 ANN中的这种确定性性质会导致使用ANN进行医学诊断,法律问题和投资组合管理的局限性,其中不仅要发现预测,而且还需要预测的不确定性。为了解决此类问题,我们提出了一个预测性概率神经网络模型,该模型对应于在条件生成对抗网络(CGAN)中使用生成器的不同方式,该方式通常用于条件样品生成。通过逆转普通CGAN的输入和输出,该模型可以成功用作预测模型。此外,由于采用了对抗性训练,该模型对噪音非常有力。此外,为了衡量预测的不确定性,我们分别引入了回归问题和分类问题的熵和相对熵。提出的框架应用于股票市场数据和图像分类任务。结果,提出的框架显示出卓越的估计性能,尤其是在嘈杂的数据上。此外,已经证明,所提出的框架可以正确估计预测的不确定性。

Conventional predictive Artificial Neural Networks (ANNs) commonly employ deterministic weight matrices; therefore, their prediction is a point estimate. Such a deterministic nature in ANNs causes the limitations of using ANNs for medical diagnosis, law problems, and portfolio management, in which discovering not only the prediction but also the uncertainty of the prediction is essentially required. To address such a problem, we propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in conditional Generative Adversarial Network (cGAN) that has been routinely used for conditional sample generation. By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model; besides, the model is robust against noises since adversarial training is employed. In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems, respectively. The proposed framework is applied to stock market data and an image classification task. As a result, the proposed framework shows superior estimation performance, especially on noisy data; moreover, it is demonstrated that the proposed framework can properly estimate the uncertainty of predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源