论文标题
使用深神经网络代理加速地下水流量建模的不确定性定量
Accelerating Uncertainty Quantification of Groundwater Flow Modelling Using a Deep Neural Network Proxy
论文作者
论文摘要
量化模型参数和输出的不确定性是地下水管理模型驱动的决策支持系统中的关键组成部分。本文提出了一种新型算法方法,该方法融合了马尔可夫链蒙特卡洛(MCMC)和机器学习方法,以加速地下水流量模型的不确定性定量。我们将管理数学模型作为贝叶斯逆问题制定,将模型参数视为具有潜在概率分布的随机过程。 MCMC允许我们从此分布中进行采样,但是它具有一些局限性:处理昂贵的可能性功能时,它可能非常昂贵,随后的样品通常高度相关,并且标准的大都市杂物算法受到维度的诅咒。本文设计了一个大都市杂货建议,该提案利用了地下水流模型的深神经网络(DNN)近似,以显着加速MCMC采样。我们修改了延迟的接受(DA)模型层次结构,该层次结构是通过使用廉价的DNN近似来运行短子链来生成建议的,从而导致了随后的精细模型提案的去相关。使用简单的自适应误差模型,我们估算并纠正DNN近似相对于即时后验分布的偏置。该方法在两个合成示例上进行了测试。各向同性的二维问题,以及各向异性的三维问题。结果表明,与单级MCMC相比,不确定性定量的成本可以降低50%,具体取决于所采用的DNN的预成本和准确性。
Quantifying the uncertainty in model parameters and output is a critical component in model-driven decision support systems for groundwater management. This paper presents a novel algorithmic approach which fuses Markov Chain Monte Carlo (MCMC) and Machine Learning methods to accelerate uncertainty quantification for groundwater flow models. We formulate the governing mathematical model as a Bayesian inverse problem, considering model parameters as a random process with an underlying probability distribution. MCMC allows us to sample from this distribution, but it comes with some limitations: it can be prohibitively expensive when dealing with costly likelihood functions, subsequent samples are often highly correlated, and the standard Metropolis-Hastings algorithm suffers from the curse of dimensionality. This paper designs a Metropolis-Hastings proposal which exploits a deep neural network (DNN) approximation of a groundwater flow model, to significantly accelerate MCMC sampling. We modify a delayed acceptance (DA) model hierarchy, whereby proposals are generated by running short subchains using an inexpensive DNN approximation, resulting in a decorrelation of subsequent fine model proposals. Using a simple adaptive error model, we estimate and correct the bias of the DNN approximation with respect to the posterior distribution on-the-fly. The approach is tested on two synthetic examples; a isotropic two-dimensional problem, and an anisotropic three-dimensional problem. The results show that the cost of uncertainty quantification can be reduced by up to 50% compared to single-level MCMC, depending on the precomputation cost and accuracy of the employed DNN.