论文标题

$ d> 2 $:huygens或复兴的操作员热化

Operator thermalisation in $d>2$: Huygens or resurgence

论文作者

Engelsöy, Julius, Larana-Aragon, Jorge, Sundborg, Bo, Wintergerst, Nico

论文摘要

大多数复合算子在非零温度下,即使在自由田间理论中,与时间呈指数型的相关函数。该洞察力最近在OTH(操作员热化假设)中进行了整理。我们重新考虑了一个早期的例子,其中大$ n $免费字段受到单线约束。这项在维度上的研究$ d> 2 $激发了原始OTH的技术修改,以允许广义免费字段。此外,Huygens的原理仅适用于波动方程,仅在均匀的维度上,导致热差异差异。当Huygens的原理适用时,它可以直接起作用,但是如果不适用,热化更加难以捉摸。取而代之的是,在奇怪的维度中,我们通过指出指数弛豫类似于非扰动校正与渐近扰动扩张的链接。在不运用复苏技术的力量的情况下,我们仍然在奇数维度上找到对热化的支持,尽管这些论点是不完整的。

Correlation functions of most composite operators decay exponentially with time at non-zero temperature, even in free field theories. This insight was recently codified in an OTH (operator thermalisation hypothesis). We reconsider an early example, with large $N$ free fields subjected to a singlet constraint. This study in dimensions $d>2$ motivates technical modifications of the original OTH to allow for generalised free fields. Furthermore, Huygens' principle, valid for wave equations only in even dimensions, leads to differences in thermalisation. It works straightforwardly when Huygens' principle applies, but thermalisation is more elusive if it does not apply. Instead, in odd dimensions we find a link to resurgence theory by noting that exponential relaxation is analogous to non-perturbative corrections to an asymptotic perturbation expansion. Without applying the power of resurgence technology we still find support for thermalisation in odd dimensions, although these arguments are incomplete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源