论文标题
IIA型模量稳定的系统学
Systematics of Type IIA moduli stabilisation
论文作者
论文摘要
我们分析了在存在$ p $ form,几何和非几何通量的情况下,IIA型Erientidifolds的通量引起的标量潜力。就像在Calabi-yau情况下一样,电势也会提出双线性结构,对轴和萨克西斯有分解的依赖性。此功能允许人们对Vacua进行系统的搜索,我们为几何背景而实现。在稳定性标准的指导下,我们考虑具有特定壳体F-Term模式的配置,为此我们为DE Sitter Extrema提供了无关结果。我们对超对称性和非超对称性真空的分支进行了分类,并认为后者在大部分子集中均稳定。我们的解决方案从4D或10D观点获得了文献中的先前结果并概括了先前的结果。
We analyse the flux-induced scalar potential for type IIA orientifolds in the presence of $p$-form, geometric and non-geometric fluxes. Just like in the Calabi-Yau case, the potential presents a bilinear structure, with a factorised dependence on axions and saxions. This feature allows one to perform a systematic search for vacua, which we implement for the case of geometric backgrounds. Guided by stability criteria, we consider configurations with a particular on-shell F-term pattern, for which we derive a no-go result for de Sitter extrema. We classify branches of supersymmetric and non-supersymmetric vacua, and argue that the latter are perturbatively stable for a large subset of them. Our solutions reproduce and generalise previous results in the literature, obtained either from the 4d or 10d viewpoint.