论文标题

基于多变量尺度混合模型的脑电图检测非高卢的检测,用于诊断癫痫发作

Non-Gaussianity Detection of EEG Signals Based on a Multivariate Scale Mixture Model for Diagnosis of Epileptic Seizures

论文作者

Furui, Akira, Onishi, Ryota, Takeuchi, Akihito, Akiyama, Tomoyuki, Tsuji, Toshio

论文摘要

目的:从头皮脑电图(EEG)信号检测癫痫发作可以促进早期诊断和治疗。先前的研究表明,脑电图分布的高斯性根据癫痫发作的存在或不存在而发生变化。但是,没有一般的脑电图信号模型可以解释统一方案中分布的这种变化。方法:本文介绍了基于多元尺度混合物分布的随机脑电图模型的制定,该模型可以代表由脑电图中随机波动引起的非高斯性变化。此外,我们通过将模型与过滤器库相结合,并引入代表每个EEG频率频段潜在的非高斯性潜在的功能来提出一种脑电图分析方法。结果:我们将提出的方法应用于来自20名局灶性癫痫患者的多通道脑电图数据。结果表明,在癫痫发作期间,尤其是在高频带中,所提出的特征显着增加。在高频带中计算的特征允许仅使用一个简单的阈值对癫痫发作和非癫痫段的高度精确分类[接收器操作特征曲线(AUC)= 0.881]。结论:本文提出了一个多元尺度混合物分布分布的随机脑电图模型,该模型能够表示与癫痫发作相关的非高斯性。使用模拟和实际脑电图数据的实验证明了该模型的有效性及其对癫痫发作检测的适用性。意义:通过所提出的模型量化的脑电图的随机波动可以帮助以高精度检测癫痫发作。

Objective: The detection of epileptic seizures from scalp electroencephalogram (EEG) signals can facilitate early diagnosis and treatment. Previous studies suggested that the Gaussianity of EEG distributions changes depending on the presence or absence of seizures; however, no general EEG signal models can explain such changes in distributions within a unified scheme. Methods: This paper describes the formulation of a stochastic EEG model based on a multivariate scale mixture distribution that can represent changes in non-Gaussianity caused by stochastic fluctuations in EEG. In addition, we propose an EEG analysis method by combining the model with a filter bank and introduce a feature representing the non-Gaussianity latent in each EEG frequency band. Results: We applied the proposed method to multichannel EEG data from twenty patients with focal epilepsy. The results showed a significant increase in the proposed feature during epileptic seizures, particularly in the high-frequency band. The feature calculated in the high-frequency band allowed highly accurate classification of seizure and non-seizure segments [area under the receiver operating characteristic curve (AUC) = 0.881] using only a simple threshold. Conclusion: This paper proposed a multivariate scale mixture distribution-based stochastic EEG model capable of representing non-Gaussianity associated with epileptic seizures. Experiments using simulated and real EEG data demonstrated the validity of the model and its applicability to epileptic seizure detection. Significance: The stochastic fluctuations of EEG quantified by the proposed model can help detect epileptic seizures with high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源