论文标题

部分痕量回归和低级Kraus分解

Partial Trace Regression and Low-Rank Kraus Decomposition

论文作者

Kadri, Hachem, Ayache, Stéphane, Huusari, Riikka, Rakotomamonjy, Alain, Ralaivola, Liva

论文摘要

痕量回归模型是研究良好的线性回归模型的直接扩展,它允许将矩阵映射到实现的输出。我们在这里介绍了一个更通用的模型,即部分跟踪回归模型,这是一个从矩阵值输入到矩阵值值输出的线性映射家族;该模型集成了痕量回归模型,从而包含线性回归模型。从量子信息理论中借用工具,在经过广泛研究的部分痕量操作员的情况下,我们通过利用所谓的完全积极地图的所谓低级kraus表示,提出了一个从数据中学习部分痕量回归模型的框架。我们展示了我们的框架与为i)矩阵到马特里克体回归和ii)阳性半芬属矩阵完成的合成和现实实验的相关性,这两个任务可以作为部分痕量回归问题进行配方。

The trace regression model, a direct extension of the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce an even more general model, namely the partial-trace regression model, a family of linear mappings from matrix-valued inputs to matrix-valued outputs; this model subsumes the trace regression model and thus the linear regression model. Borrowing tools from quantum information theory, where partial trace operators have been extensively studied, we propose a framework for learning partial trace regression models from data by taking advantage of the so-called low-rank Kraus representation of completely positive maps. We show the relevance of our framework with synthetic and real-world experiments conducted for both i) matrix-to-matrix regression and ii) positive semidefinite matrix completion, two tasks which can be formulated as partial trace regression problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源