论文标题

物种面积关系(SAR):使用几何方法的模式描述

Species Area Relationship (SAR): Pattern Description with Geometrical Approach

论文作者

Alirezazadeh, Saeid, Alibabaei, Khadijeh, Hubbell, Stephen P.

论文摘要

几种配方描述了物种区域关系的模式,对数线性,半log线性等。这些模式主要解释了大面积的物种区域关系,对于小面积,它们与实际数据提供了显着差异。我们考虑物种个体的几何位置,并以此为基础,我们发现观察至少一个物种的可能性。我们应用了储罐中混合盐水问题的经过充分研究的问题来描述SAR的配方。对于矩形样品区域,物种面积关系遵循该模式,并且有一些简化,$ s = c | a^β+a |^z $,其中$ s $是$ a $ a $ a $ a $ a $ a $ a $ a $ a,c,z $和$β$的物种数量,$ z <1 $ z <1 $和$β\ leq1 $。我们还展示了常数$ z $与某些宏观生态模式的关系,即空间聚集,面积覆盖率的百分比和核心 - 卫星模型。我们使用所有个人,使用所有个人,使用来自巴罗科罗拉多岛(BCI)的50公顷土地的热带树种的数据来体现我们的方法。

Several formulations are describing the pattern of species-area relationship, log-log linear, semi-log linear, among others. These patterns mainly explain the species-area relationship for large areas, and for the small area, they provide significant differences from real data. We consider the geometric position of individuals of species, and base on that, we find the probability of observing at least one individual of the species. We apply a translation of the well-studied problem of mixed salt-water in a tank to describe the formula of SAR. For a rectangular sample area the species-area relationship follows the pattern, with some simplification, $S=c|A^β+a|^z$, where $S$ is the number of species in the area of size $A$ and $a,c,z$, and $β$ are constants with $z<1$ and $β\leq1$. We also show how the constant $z$ relates to some macroecological patterns, namely spatial aggregation, percentage of area coverage, and the core-satellite model. We exemplify our method using data on tropical tree species from a 50ha plot in Barro Colorado Island (BCI), Panama, using all individuals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源