论文标题
第一原理中的无序晶体II:运输系数
Disordered Crystals from First Principles II: Transport Coefficients
论文作者
论文摘要
这是在有限温度下电子传输基础的项目的第二部分,旨在将Ab-Initio分子动力学(AIMD)和有限的倍元的Kubo-formula与热无序的晶体晶体相结合。后者是在千古动力学系统中编码的$(ω,\ mathbb g,{\ rm d} \ mathbb p)$,其中$ω$是原子自由度的配置空间,$ \ \ \ \ m m iathbb g $是在$ω$ and $ω$ rm dm d} tob p的$ p. $ \ mathbb g $ -Action。我们首先演示了如何从连续kohn-sham理论传递到基于原子轨道形式的离散形式,而无需破坏物理可观察的w.r.t.的协方差。 $(ω,\ mathbb g,{\ rm d} \ mathbb p)$。然后,我们展示了如何实现库拜形式,研究其自动化属性,并为其提供最佳的有限体积近似。我们还描述了一种数值创新,该创新使AIMD模拟具有更长的轨道,并详细介绍了我们的模拟细节。最后,我们对不同温度下晶体硅的转运系数提出了数值结果。
This is the second part of a project on the foundations of first-principle calculations of the electron transport in crystals at finite temperatures, aiming at a predictive first-principles platform that combines ab-initio molecular dynamics (AIMD) and a finite-temperature Kubo-formula with dissipation for thermally disordered crystalline phases. The latter are encoded in an ergodic dynamical system $(Ω,\mathbb G,{\rm d}\mathbb P)$, where $Ω$ is the configuration space of the atomic degrees of freedom, $\mathbb G$ is the space group acting on $Ω$ and ${\rm d}\mathbb P$ is the ergodic Gibbs measure relative to the $\mathbb G$-action. We first demonstrate how to pass from the continuum Kohn-Sham theory to a discrete atomic-orbitals based formalism without breaking the covariance of the physical observables w.r.t. $(Ω,\mathbb G,{\rm d}\mathbb P)$. Then we show how to implement the Kubo-formula, investigate its self-averaging property and derive an optimal finite-volume approximation for it. We also describe a numerical innovation that made possible AIMD simulations with longer orbits and elaborate on the details of our simulations. Lastly, we present numerical results on the transport coefficients of crystal silicon at different temperatures.