论文标题

多方面的倒谐波振荡器:混乱与复杂性

The Multi-faceted Inverted Harmonic Oscillator: Chaos and Complexity

论文作者

Bhattacharyya, Arpan, Chemissany, Wissam, Haque, S. Shajidul, Murugan, Jeff, Yan, Bin

论文摘要

谐波振荡器是物理模型的典范。从概念和计算上简单,但足够丰富,可以教给我们有关量表的物理学,这些量表涵盖了经典力学的量子理论。这种多方面的性质也扩展到其倒置的对应物,其中振荡器频率在分析上继续延续到纯粹的想象值。在本文中,我们探测了倒的谐波振荡器(IHO),并具有最近开发的量子混乱诊断,例如超阶相关器(OTOC)和电路复杂性。特别是,我们研究了IHO的位移操作员的OTOC,并没有非高斯立方扰动,分别探索了真正的和准的扰动。此外,我们计算了倒振荡器的完整量子Lyapunov光谱,在Lyapunov指数中找到了配对的结构。我们还使用海森堡组来计算随时间发展的位移操作员的复杂性,该算子显示了混乱的行为。最后,我们将分析扩展到了N转向的谐波振荡器,以研究在耗散,争夺和渐近方案中编码的不同时间尺度上的复杂性行为。

The harmonic oscillator is the paragon of physical models; conceptually and computationally simple, yet rich enough to teach us about physics on scales that span classical mechanics to quantum field theory. This multifaceted nature extends also to its inverted counterpart, in which the oscillator frequency is analytically continued to pure imaginary values. In this article we probe the inverted harmonic oscillator (IHO) with recently developed quantum chaos diagnostics such as the out-of-time-order correlator (OTOC) and the circuit complexity. In particular, we study the OTOC for the displacement operator of the IHO with and without a non-Gaussian cubic perturbation to explore genuine and quasi scrambling respectively. In addition, we compute the full quantum Lyapunov spectrum for the inverted oscillator, finding a paired structure among the Lyapunov exponents. We also use the Heisenberg group to compute the complexity for the time evolved displacement operator, which displays chaotic behaviour. Finally, we extended our analysis to N-inverted harmonic oscillators to study the behaviour of complexity at the different timescales encoded in dissipation, scrambling and asymptotic regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源