论文标题
循环量子宇宙学中的准概率分布
Quasi-probability distributions in Loop Quantum Cosmology
论文作者
论文摘要
在本文中,我们在相空间及其相应的Weyl量化图中介绍了一个完整的参数化准概率分布家族,目的是将最近开发的Wigner-Weyl形式概括在Loop量子宇宙学计划(LQC)中。特别是,我们打算以实际行中有价值的状态定义那些准分布,以一种方式,以使它们被参数标记,该参数说明了与非交换量子运算符相对应的订购歧义。因此,我们注意到参数化准概率分布的投影导致边际概率密度,这些密度在任何订购处方下都是不变的。我们还注意到,与标准Schrödinger代表相反,对于任意特征,准分布决定了独立于订购的正函数。此外,通过明智地实现LQG参数排序的WEYL量化图,我们能够分别以简单的方式恢复标准,反标准和Weyl对称顺序的相关情况。我们预计我们的结果可能有助于分析LQC计划中的几个基本方面,特殊的与一致性,挤压状态和操作员的收敛有关的特殊方面,如量子光学和量子信息框架中的广泛分析。
In this paper, we introduce a complete family of parametrized quasi-probability distributions in phase space and their corresponding Weyl quantization maps with the aim to generalize the recently developed Wigner-Weyl formalism within the Loop Quantum Cosmology program (LQC). In particular, we intend to define those quasi-distributions for states valued on the Bohr compactification of the real line in such a way that they are labeled by a parameter that accounts for the ordering ambiguity corresponding to non-commutative quantum operators. Hence, we notice that the projections of the parametrized quasi-probability distributions result in marginal probability densities which are invariant under any ordering prescription. We also note that, in opposition to the standard Schrödinger representation, for an arbitrary character the quasi-distributions determine a positive function independently of the ordering. Further, by judiciously implementing a parametric-ordered Weyl quantization map for LQG, we are able to recover in a simple manner the relevant cases of the standard, anti-standard, and Weyl symmetric orderings, respectively. We expect that our results may serve to analyze several fundamental aspects within the LQC program, in special those related to coherence, squeezed states, and the convergence of operators, as extensively analyzed in the quantum optics and in the quantum information frameworks.