论文标题
关于Yang-Mills型理论的扩展,它们的空间及其类别
On Extensions of Yang-Mills-Type Theories, Their Spaces and Their Categories
论文作者
论文摘要
在本文中,我们考虑了Yang-Mills-type(YMT)理论扩展的分类问题。对我们来说,YMT理论与经典的Yang-Mills理论不同,允许在曲率上进行任意配对。具有规定的量规组$ g $和Instanton Sector $ p $的YMT理论的空间被分类,其等级给出了上限,并将其与Yang-Mills理论的空间进行了比较。我们将YMT理论的扩展作为一种简单而统一的方法,以实现许多不同的变形概念以及先前在文献中讨论的校正术语的添加。在Arxiv:2004.13144的意义上,这些扩展与出现现象之间的关系。我们考虑了固定YMT理论$ S^g $的所有扩展空间,我们证明,对于$ \ \ \ mthbb {r} $中的$ \ mathbb {g} $的每个加性群体动作,以及每个交换和Unital Ring $ r $,此空间具有$ r [\ Mathbb {g Module bundle的诱导结构。我们猜想该捆绑包可以连续嵌入琐碎的束中。定义固定基督教青年会理论的扩展之间的态度是定义扩展类别的方式。事实证明,该类别是切片类别的反思性子类别,反映了其限制和colimits的某些属性。
In this paper we consider the classification problem of extensions of Yang-Mills-type (YMT) theories. For us, a YMT theory differs from the classical Yang-Mills theories by allowing an arbitrary pairing on the curvature. The space of YMT theories with a prescribed gauge group $G$ and instanton sector $P$ is classified, an upper bound to its rank is given and it is compared with the space of Yang-Mills theories. We present extensions of YMT theories as a simple and unified approach to many different notions of deformations and addition of correction terms previously discussed in the literature. A relation between these extensions and emergence phenomena in the sense of arXiv:2004.13144 is presented. We consider the space of all extensions of a fixed YMT theory $S^G$ and we prove that for every additive group action of $\mathbb{G}$ in $\mathbb{R}$ and every commutative and unital ring $R$, this space has an induced structure of $R[\mathbb{G}]$-module bundle. We conjecture that this bundle can be continuously embedded into a trivial bundle. Morphisms between extensions of a fixed YMT theory are defined in such a way that they define a category of extensions. It is proved that this category is a reflective subcategory of a slice category, reflecting some properties of its limits and colimits.