论文标题
核物质在相对论的Brueckner-Hartree-fock模型中具有高精度电荷依赖性电势
Properties of nuclear matter in relativistic Brueckner-Hartree-Fock model with high-precision charge-dependent potentials
论文作者
论文摘要
核物质的性质在相对论的Brueckner-Hartree-fock模型的框架中进行了研究,该模型具有最新的高精度电荷依赖性波恩(PVCD-BONN)电势,其中将pion和nucleon之间的耦合用作伪造子形式。这些现实的PVCD-bonn电位已重新归一化,可为有效的核子核子($ nn $)相互作用,$ g $矩阵。通过在核培养基中求解BlankenBecler-Sugar(BBS)方程来获得它们。然后,用PVCD-BONN A,B,C电位计算对称核物质的饱和性能。每个核能的能量约为$ -10.72 $ MEV至$ -16.83 $ MEV的饱和密度,$ 0.139 $ fm $^{ - 3} $至$ 0.192 $ fm $^{ - 3} $,分别具有这三个潜力。它清楚地表明,锥形和核子之间的伪耦合可以产生与伪镜偶联相比的合理饱和性能。此外,这些饱和属性与$ nn $电势的张量组件具有很强的相关性,即杜特隆的$ d $ - 州概率,$ p_d $形成相对论的coester band。另外,通过这些高精度电荷依赖性电位的部分波贡献,还讨论了核物质中的电荷对称性断裂(CSB)和电荷独立性破坏(CIB)效应。总的来说,CSB的幅度来自$ NN $和$ PP $的电位之间的差异约为$ 0.05 $ MEV,而CIB的差额约为$ 0.35 $ MEV,与$ NP $和$ pp $的潜力之间的差异相比。最后,还使用不同的不对称参数计算了不对称核物质状态的方程。发现有效的中子质量比中子富含质子的质子大。
Properties of nuclear matter are investigated in the framework of relativistic Brueckner-Hartree-Fock model with the latest high-precision charge-dependent Bonn (pvCD-Bonn) potentials, where the coupling between pion and nucleon is adopted as pseudovector form. These realistic pvCD-Bonn potentials are renormalized to effective nucleon-nucleon ($NN$) interactions, $G$ matrices. They are obtained by solving the Blankenbecler-Sugar (BbS) equation in nuclear medium. Then, the saturation properties of symmetric nuclear matter are calculated with pvCD-Bonn A, B, C potentials. The energies per nucleon are around $-10.72$ MeV to $-16.83$ MeV at saturation densities, $0.139$ fm$^{-3}$ to $0.192$ fm$^{-3}$ with these three potentials, respectively. It clearly demonstrates that the pseudovector coupling between pion and nucleon can generate reasonable saturation properties comparing with pseudoscalar coupling. Furthermore, these saturation properties have strong correlations with the tensor components of $NN$ potentials, i.e., the $D$-state probabilities of deuteron, $P_D$ to form a relativistic Coester band. In addition, the charge symmetry breaking (CSB) and charge independence breaking (CIB) effects are also discussed in nuclear matter from the partial wave contributions with these high-precision charge-dependent potentials. In general, the magnitudes of CSB from the differences between $nn$ and $pp$ potentials are about $0.05$ MeV, while those of CIB are around $0.35$ MeV from the differences between $np$ and $pp$ potentials. Finally, the equations of state of asymmetric nuclear matter are also calculated with different asymmetry parameters. It is found that the effective neutron mass is larger than the proton one in neutron-rich matter.