论文标题
通过插头中的最小二乘在高维时间序列模型中的变更点推断
Inference on the change point in high dimensional time series models via plug in least squares
论文作者
论文摘要
我们研究了最小二乘估计器中的插头,其中的变化点参数是在subgaussian或次指数分布下的平均值高度随机矢量的平均值。我们获得了足够的条件,在该条件下,该估计器具有对平均参数估计值的插头足够的适应性,以便在整数刻度中产生最佳的收敛率$ o_p(ξ^{ - 2})$。 This rate is preserved while allowing high dimensionality as well as a potentially diminishing jump size $ξ,$ provided $s\log (p\vee T)=o(\surd(Tl_T))$ or $s\log^{3/2}(p\vee T)=o(\surd(Tl_T))$ in the subgaussian and subexponential cases, respectively.这里$ s,p,t $和$ l_t $代表稀疏参数,模型维度,采样周期以及更改点与参数边界的分离。此外,由于收敛速度不含$ s,p $和$ t的对数项,因此$ t允许存在限制分布。然后将这些分布得出作为两侧负漂移布朗运动的{\ it Argmax}的{\ it Argmax},或分别在消失和非变化的跳跃大小制度下的两侧负漂移随机行走。从而允许在高维设置中推断变更点参数。提供了可行的算法,用于实施提出的方法。蒙特卡洛模拟支持理论结果。
We study a plug in least squares estimator for the change point parameter where change is in the mean of a high dimensional random vector under subgaussian or subexponential distributions. We obtain sufficient conditions under which this estimator possesses sufficient adaptivity against plug in estimates of mean parameters in order to yield an optimal rate of convergence $O_p(ξ^{-2})$ in the integer scale. This rate is preserved while allowing high dimensionality as well as a potentially diminishing jump size $ξ,$ provided $s\log (p\vee T)=o(\surd(Tl_T))$ or $s\log^{3/2}(p\vee T)=o(\surd(Tl_T))$ in the subgaussian and subexponential cases, respectively. Here $s,p,T$ and $l_T$ represent a sparsity parameter, model dimension, sampling period and the separation of the change point from its parametric boundary. Moreover, since the rate of convergence is free of $s,p$ and logarithmic terms of $T,$ it allows the existence of limiting distributions. These distributions are then derived as the {\it argmax} of a two sided negative drift Brownian motion or a two sided negative drift random walk under vanishing and non-vanishing jump size regimes, respectively. Thereby allowing inference of the change point parameter in the high dimensional setting. Feasible algorithms for implementation of the proposed methodology are provided. Theoretical results are supported with monte-carlo simulations.