论文标题
空间迭代囚犯的困境作为转型半群
Spatial Iterated Prisoner's Dilemma as a Transformation Semigroup
论文作者
论文摘要
囚犯的困境(PD)是一种游戏理论模型,该模型在各种各样的领域中研究,以了解理性的自私者之间的合作出现。在这项工作中,我们将空间迭代的PD制定为一个离散的动力学系统,其中代理在每个时间步中播放游戏,并使用Krohn-rhodes代数自动机理论对其进行代数进行分析,并使用转换半群体的全能分解的计算实现。在每次迭代中,所有玩家都采用最有利可图的策略。重置给定玩家策略的扰动为动态提供了其他生成事件。我们的初步研究表明,代数结构,包括如何组成作用于策略空间分布的置换群体的自然子系统,是在回报矩阵的某些参数制度中出现的,并且其他参数状态不存在。随着诱惑缺陷的诱惑处于中间水平时,出现更多的可逆性库(Krohn-Rhodes复杂性)中的组水平数量(Krohn-Rhodes复杂性的上限)的差异被发现。该分析发现的代数结构可以解释为阐明空间迭代的PD的动力学。
The prisoner's dilemma (PD) is a game-theoretic model studied in a wide array of fields to understand the emergence of cooperation between rational self-interested agents. In this work, we formulate a spatial iterated PD as a discrete-event dynamical system where agents play the game in each time-step and analyse it algebraically using Krohn-Rhodes algebraic automata theory using a computational implementation of the holonomy decomposition of transformation semigroups. In each iteration all players adopt the most profitable strategy in their immediate neighbourhood. Perturbations resetting the strategy of a given player provide additional generating events for the dynamics. Our initial study shows that the algebraic structure, including how natural subsystems comprising permutation groups acting on the spatial distributions of strategies, arise in certain parameter regimes for the pay-off matrix, and are absent for other parameter regimes. Differences in the number of group levels in the holonomy decomposition (an upper bound for Krohn-Rhodes complexity) are revealed as more pools of reversibility appear when the temptation to defect is at an intermediate level. Algebraic structure uncovered by this analysis can be interpreted to shed light on the dynamics of the spatial iterated PD.